Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chathuranga, U."

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Early identification of acute kidney injury in Russell's viper (Daboia russelii) envenoming using renal biomarkers
    (Public Library of Science, 2019) Ratnayake, I.; Mohamed, F.; Buckley, N.A.; Gawarammana, I.B.; Dissanayake, D.M.; Chathuranga, U.; Munasinghe, M.; Maduwage, K.; Jayamanne, S.; Endre, Z.H.; Isbister, G.K.
    BACKGROUND: Acute kidney injury (AKI) is a major complication of snake envenoming, but early diagnosis remains problematic. We aimed to investigate the time course of novel renal biomarkers in AKI following Russell's viper (Daboia russelii) bites. METHODOLOGY/PRINCIPAL FINDINGS: We recruited a cohort of patients with definite Russell's viper envenoming and collected serial blood and urine samples on admission (<4h post-bite), 4-8h, 8-16h, 16-24h, 1 month and 3 months post-bite. AKI stage (1-3) was defined using the Acute Kidney Injury Network criteria. AKI stages (1-3) were defined by the Acute Kidney Injury Network (AKIN) criteria. There were 65 Russell's viper envenomings and 49 developed AKI: 24 AKIN stage 1, 13 stage 2 and 12 stage 3. There was a significant correlation between venom concentrations and AKI stage (p = 0.007), and between AKI stage and six peak biomarker concentrations. Although most biomarker concentrations were elevated within 8h, no biomarker performed well in diagnosing AKI <4h post-bite. Three biomarkers were superior to serum creatinine (sCr) in predicting AKI (stage 2/3) 4-8h post-bite: serum cystatin C (sCysC) with an area under the receiver operating curve (AUC-ROC), 0.78 (95%CI:0.64-0.93), urine neutrophil gelatinase-associated lipocalin (uNGAL), 0.74 (95%CI:0.59-0.87) and urine clusterin (uClu), 0.81 (95%CI:0.69-0.93). No biomarker was better than sCr after 8h. Six other urine biomarkers urine albumin, urine beta2-microglobulin, urine kidney injury molecule-1, urine cystatin C, urine trefoil factor-3 and urine osteopontin either had minimal elevation, and/or minimal prediction for AKI stage 2/3 (AUC-ROC<0.7). CONCLUSIONS/SIGNIFICANCE: AKI was common and sometimes severe following Russell's viper bites. Three biomarkers uClu, uNGAL and sCysC, appeared to become abnormal in AKI earlier than sCr, and may be useful in early identification of envenoming.
  • Thumbnail Image
    Item
    Glycaemic control and avenues for improvement among people with type 2 diabetes mellitus from rural Sri Lanka – a retrospective cohort study
    (Elsevier, 2023) Mettananda, C.; Chathuranga, U.; Rathnayake, T.; Luke, N.; Meegodavidanage, N.
    BACKGROUND The majority of Sri Lankans and South Asians are rural dwellers but follow-up data on glycaemic control and its associations in rural communities are sparse. We followed up a cohort of hospital-based rural Sri Lankans with diabetes from diagnosis up to 24-months. METHODS We conducted a retrospective cohort study of people with type-2 diabetes (T2DM) diagnosed 24 months before enrolment who were being followed up at Medical/Endocrine clinics of five hospitals selected by stratified random sampling in Anuradhapura, a rural district of Sri Lanka from June 2018 to May 2019 and retrospectively followed them up to the diagnosis of the disease. Prescription practices, cardiovascular risk factor control and their correlates were studied using self-administered and interviewer-administered questionnaires and perusing medical records. Data were analysed using SPSS version-22. FINDINGS A total of 421 participants [mean age 58.3 ± 10.4 years, female 340 (80.8%)] were included in the study. Most participants were started on anti-diabetic medications in addition to lifestyle measures. Of them, 270 (64.1%) admitted poor dietary-control, 254 (60.3%) inadequate medication-compliance and 227 (53.9%) physical inactivity. Glycaemic control was assessed mainly on fasting plasma glucose (FPG) and glycated haemoglobin (HbA1c) data were available in only 44 (10.4%). Target achievements in FPG, blood pressure, body mass index and non-smoking at 24-months following initiation of treatment were 231/421 (54.9%), 262/365 (71.7%), 74/421 (17.6%) and 396/421 (94.1%) respectively. INTERPRETATION In this cohort of rural Sri Lankans with type-2 diabetes mellitus, all were started on anti-diabetic medications at the diagnosis, but glycaemic target achievement was inadequate at 24 months. We identified the major patient-related reasons for poor blood glucose control were poor compliance with diet/lifestyle and/or medications and misconceptions about antidiabetic medications.
  • No Thumbnail Available
    Item
    Mechanism-specific injury biomarkers predict nephrotoxicity early following glyphosate surfactant herbicide (GPSH) poisoning
    (Elsevier, 2016) Mohamed, F.; Endre, Z.H.; Pickering, J.W.; Jayamanne, S.; Palangasinghe, C.; Shahmy, S.; Chathuranga, U.; Wijerathne, T.; Shihana, F.; Gawarammana, I.; Buckley, N.A.
    Acute kidney injury (AKI) is common following glyphosate surfactant herbicide (GPSH) self-poisoning. Serum creatinine (sCr) is the most widely used renal biomarker for diagnosis of AKI although a recent study in rats suggested that urinary kidney injury molecule-1 predicted AKI earlier and better after GPSH-induced nephrotoxicity. We explored the utility of a panel of biomarkers to diagnose GPSH-induced nephrotoxicity in humans. In a prospective multi-centre observational study, serial urine and blood samples were collected until discharge and at follow-up. The diagnostic performance of each biomarker at various time points was assessed. AKI was diagnosed using the Acute Kidney Injury Network (AKIN) definitions. The added value of each biomarker to sCr to diagnose AKI was assessed by the integrated discrimination improvement (IDI) metric. Of 90 symptomatic patients, 51% developed AKI and 5 patients who developed AKIN ≥ 2 died. Increased sCr at 8 and 16 hours predicted moderate to severe AKI and death. None of the 10 urinary biomarkers tested increased above normal range in patients who did not develop AKI or had mild AKI (AKIN1); most of these patients also had only minor clinical toxicity. Absolute concentrations of serum and urinary cystatin C, urinary interleukin-18 (IL-18), Cytochrome C (CytoC) and NGAL increased many fold within 8 hours in patients who developed AKIN ≥ 2. Maximum 8 and 16 hour concentrations of these biomarkers showed an excellent diagnostic performance (AUC-ROC ≥0.8) to diagnose AKIN ≥ 2. However, of these biomarkers only uCytoC added value to sCr to diagnose AKI when assessed by IDI metrics. GPSH-induced nephrotoxicity can be diagnosed within 24 hours by sCr. Increases in uCytoC and uIL-18 confirm GPSH-induces apoptosis and causes mitochondrial toxicity. Use of these biomarkers may help to identify mechanism specific targeted therapies for GPSH nephrotoxicity in clinical trials.
  • Thumbnail Image
    Item
    Mechanisms underlying early rapid increases in creatinine in paraquat poisoning
    (Public Library of Science, 2015) Mohamed, F.; Endre, Z.; Jayamanne, S.; Pianta, T.; Peake, P.; Palangasinghe, C.; Chathuranga, U.; Jayasekera, K.; Wunnapuk, K.; Shihana, F.; Shahmy, S.; Buckley, N.
    BACKGROUND: Acute kidney injury (AKI) is common after severe paraquat poisoning and usually heralds a fatal outcome. The rapid large increases in serum creatinine (Cr) exceed that which can be explained by creatinine kinetics based on loss of glomerular filtration rate (GFR). METHODS AND FINDINGS: This prospective multi-centre study compared the kinetics of two surrogate markers of GFR, serum creatinine and serum cystatin C (CysC), following paraquat poisoning to understand and assess renal functional loss after paraquat poisoning. Sixty-six acute paraquat poisoning patients admitted to medical units of five hospitals were included. Relative changes in creatinine and CysC were monitored in serial blood and urine samples, and influences of non-renal factors were also studied. RESULTS: Forty-eight of 66 patients developed AKI (AKIN criteria), with 37 (56%) developing moderate to severe AKI (AKIN stage 2 or 3). The 37 patients showed rapid increases in creatinine of >100% within 24 hours, >200% within 48 hours and >300% by 72 hours and 17 of the 37 died. CysC concentration increased by 50% at 24 hours in the same 37 patients and then remained constant. The creatinine/CysC ratio increased 8 fold over 72 hours. There was a modest fall in urinary creatinine and serum/urine creatinine ratios and a moderate increase in urinary paraquat during first three days. CONCLUSION: Loss of renal function contributes modestly to the large increases in creatinine following paraquat poisoning. The rapid rise in serum creatinine most probably represents increased production of creatine and creatinine to meet the energy demand following severe oxidative stress. Minor contributions include increased cyclisation of creatine to creatinine because of acidosis and competitive or non-competitive inhibition ofcreatinine secretion. Creatinine is not a good marker of renal functional loss after paraquat poisoning and renal injury should be evaluated using more specific biomarkers of renal injury
  • Thumbnail Image
    Item
    Population pharmacokinetics of an Indian F(ab')2 snake antivenom in patients with Russell's Viper (Daboia russelii) bites
    (Public Library of Science, 2015) Isbister, G.K.; Maduwage, K.; Saiao, A.; Buckley, N.A.; Jayamanne, S.F.; Seyed, S.; Mohamed, F.; Chathuranga, U.; Mendes, A.; Abeysinghe, C.; Karunathilake, H.; Gawarammana, I.; Lalloo, D.G.; de Silva, H.J.
    BACKGROUND: There is limited information on antivenom pharmacokinetics. This study aimed to investigate the pharmacokinetics of an Indian snake antivenom in humans with Russell's viper bites. METHODS/PRINCIPAL FINDINGS: Patient data and serial blood samples were collected from patients with Russell's viper (Daboia russelii) envenoming in Sri Lanka. All patients received Indian F(ab')2 snake antivenom manufactured by VINS Bioproducts Ltd. Antivenom concentrations were measured with sandwich enzyme immunoassays. Timed antivenom concentrations were analysed using MONOLIXvs4.2. One, two and three compartment models with zero order input and first order elimination kinetics were assessed. Models were parameterized with clearance(CL), intercompartmental clearance(Q), central compartment volume(V) and peripheral compartment volume(VP). Between-subject-variability (BSV) on relative bioavailability (F) was included to account for dose variations. Covariates effects (age, sex, weight, antivenom batch, pre-antivenom concentrations) were explored by visual inspection and in model building. There were 75 patients, median age 57 years (40-70y) and 64 (85%) were male. 411 antivenom concentration data points were analysed. A two compartment model with zero order input, linear elimination kinetics and a combined error model best described the data. Inclusion of BSV on F and weight as a covariate on V improved the model. Inclusion of pre-antivenom concentrations or different batches on BSV of F did not. Final model parameter estimates were CL,0.078 Lh-1, V,2.2L, Q,0.178Lh-1 and VP,8.33L. The median half-life of distribution was 4.6h (10-90%iles:2.6-7.1h) and half-life of elimination, 140h (10th-90th percentilesx:95-223h). CONCLUSION: Indian F(ab')2 snake antivenom displayed biexponential disposition pharmacokinetics, with a rapid distribution half-life and more prolonged elimination half-life.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify