Browsing by Author "Kasthuriarachchi, K.T.S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item EduMiner- An Automated Data Mining Tool for Intelligent Mining of Educational Data(3rd International Conference on Advances in Computing and Technology (ICACT ‒ 2018), Faculty of Computing and Technology, University of Kelaniya, Sri Lanka., 2018) Kasthuriarachchi, K.T.S.; Liyanage, S.R.Data mining is a computer based information system that is devoted to scan huge data repositories, generate information and discover knowledge. Data mining pursues to find out patterns in data, organize information of hidden relationships, structure association rules and many more operations which cannot be performed using classic computer based information systems. Therefore, data mining outcomes represent a valuable support for decisions making in various industries. Data mining in education is not a novel area but, lives in its summer season. Educational data mining emerges as a paradigm oriented to design models, tasks, methods, and algorithms for exploring data from educational settings. It finds the patterns and make predictions that characterize learners’ behaviors and achievements, domain knowledge content, assessments, educational functionalities, and applications. Educators and non-data mining experts are using different data mining tools to perform mining tasks on learners’ data. There are a few tools available to carry out educational data mining tasks. However, they have several limitations. Their main issue is difficulty to use by non- data mining experts/ educators. Therefore, an automated tool is required that satisfies the data mining needs of different users. The “EduMiner” is introduced to make important predictions about students in the education domain using data mining techniques. R studio, R Shiny, data mining algorithms and several key functionalities of Knowledge Discovery in Databases have been used in the development of “EduMiner”. The functionalities of the tool are very user-friendly and simple for novice users. The user has to configure the tool and provide the appropriate inputs for parameters such as the data set, the algorithms used for mining in advance to obtain the results of the analysis. The pre-processing will be done to clean the data prior to starting the analysis. The tool is capable of performing several analytical tasks. They are; student dropout prediction, student module performance prediction, module grade prediction, recommendations for students/ teachers, student enrollment criteria predictor and student grouping according to different characteristics. Apart from these features, the tool will consist of an intelligent execution of data analysis tasks with real time data as a background service. Finally, the results of the analysis are evaluated and visualized in order to easily understand by the user. Users of education industry can achieve a valuable gain by this tool since, it would be very user friendly to handle and easy to understand the mining results.Item A Review of Data Mining Methods for Educational Decision Support(Faculty of Graduate Studies, University of Kelaniya, Sri Lanka, 2016) Kasthuriarachchi, K.T.S.; Bhatt, C.M.; Liyanage, S.R.Data mining is a computer based information system which is devoted to scanning huge data repositories, generate information and discover knowledge. It attempts to uncover data patterns, organize information of hidden relationships, structure association rules and many more operations that cannot be performed using traditional computer based information systems. Therefore, data mining outcomes represent a valuable support for decisions making in various industries and education is one domain that can benefit from data mining. Application of data mining in education is living in its spring time and preparing for a hot summer season. Educational data mining emerges as a paradigm oriented to design models, tasks, methods, and algorithms for exploring data from educational settings. Educational Data Mining develops and adopts statistical methods, machine- learning and data mining methods to study educational data generated basically by students and educational instructors. The main goal of applying data mining in education is largely to improve learning by enabling data driven decision making for improve current educational practices and learning materials. Educational knowledge discovery, in data mining point of view can be seen as a similar process of applying the general knowledge discovery and data mining process and in experimental point of view, it can be seen as an iterative cycle of hypothesis formation, testing and refinement which not just turn data into knowledge but, also to filter the mined knowledge for decision making. There are many applications in education arena that have been resolved using data mining. There are more research studies have also been conducted under various educational problem categories and also there are a number of frequently used data mining methods use in Educational Data Mining. Various open source and commercial tools are available to apply data mining methods on the educational data. This study focuses on the identification of various educational problem domains where data mining methods can be applied and to study the suitability of the available data mining methods and the tools to perform Educational Data Mining in Sri Lankan Educational Institutes. The knowledge discovered by this review is expected to generate meaningful insight and provide guidance for important decisions made by educators.