Browsing by Author "Li, X."
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci(Stockton Press., 2021) de Las Fuentes, L.; Sung, Y. J.; Noordam, R.; Winkler, T.; Feitosa, M.F.; Schwander, K.; Bentley, A.R.; Brown, M.R.; Guo, X.; Manning, A.; Chasman, D.I.; Aschard, H.; Bartz, T. M.; Bielak, L.F.; Campbell, A.; Cheng, C.Y.; Dorajoo, R.; Hartwig, F. P.; Horimoto, A.R.V.R.; Li, C.; Li-Gao, R.; Liu, Y.; Marten, J.; Musani, S.K.; Ntalla, I.; Rankinen, T.; Richard, M.; Sim, X.; Smith, A.V.; Tajuddin, S.M.; Tayo, B.O.; Vojinovic, D.; Warren, H.R.; Xuan, D.; Alver, M.; Boissel, M.; Chai, J.F.; Chen, X.; Christensen, K.; Divers, J.; Evangelou, E.; Gao, C.; Girotto, G.; Harris, S.E.; He, M.; Hsu, F.C.; Kühnel, B.; Laguzzi, F.; Li, X.; Lyytikäinen, L. P.; Nolte, I. M.; Poveda, A.; Rauramaa, R.; Riaz, M.; Rueedi, R.; Shu, X.O.; Snieder, H.; Sofer, T.; Takeuchi, F.; Verweij, N.; Ware, E.B.; Weiss, S.; Yanek, L.R.; Amin, N.; Arking, D.E.; Arnett, D.K.; Bergmann, S.; Boerwinkle, E.; Brody, J.A.; Broeckel, U.; Brumat, M.; Burke, G.; Cabrera, C.P.; Canouil, M.; Chee, M.L.; Chen, Y. I.; Cocca, M.; Connell, J.; de Silva, H.J.; de Vries, P. S.; Eiriksdottir, G.; Faul, J.D.; Fisher, V.; Forrester, T.; Fox, E.F.; Friedlander, Y.; Gao, H.; Gigante, B.; Giulianini, F.; Gu, C.C.; Gu, D.; Harris, T. B.; He, J.; Heikkinen, S.; Heng, C. K.; Hunt, S.; Ikram, M. A.; Irvin, M.R.; Kähönen, M.; Kavousi, M.; Khor, C.C.; Kilpeläinen, T.O.; Koh, W.P.; Komulainen, P.; Kraja, A.T.; Krieger, J.E.; Langefeld, C. D.; Li, Y.; Liang, J.; Liewald, D.C.M.; Liu, C.T.; Liu, J.; Lohman, K.K.; Mägi, R.; McKenzie, C.A.; Meitinger, T.; Metspalu, A.; Milaneschi, Y.; Milani, L.; Mook-Kanamori, D.O.; Nalls, M.A.; Nelson, C.P.; Norris, J. M.; O'Connell, J.; Ogunniyi, A.; Padmanabhan, S.; Palmer, N.D.; Pedersen, N. L.; Perls, T.; Peters, A.; Petersmann, A.; Peyser, P. A.; Polasek, O.; Porteous, D. J.; Raffel, L. J.; Rice, T. K.; Rotter, J.I.; Rudan, I.; Rueda-Ochoa, O.L.; Sabanayagam, C.; Salako, B. L.; Schreiner, P.J.; Shikany, J.M.; Sidney, S.S.; Sims, M.; Sitlani, C.M.; Smith, J. A.; Starr, J. M.; Strauch, K.; Swertz, M. A.; Teumer, A.; Tham, Y. C.; Uitterlinden, A.G.; Vaidya, D.; van der Ende, M.Y.; Waldenberger, M.; Wang, L.; Wang, Y. X.; Wei, W.B.; Weir, D.R.; Wen, W.; Yao, J.; Yu, B.; Yu, C.; Yuan, J. M.; Zhao, W.; Zonderman, A.B.; Becker, D.M.; Bowden, D.W.; Deary, I. J.; Dörr, M.; Esko, T.; Freedman, B. I.; Froguel, P.; Gasparini, P.; Gieger, C.; Jonas, J.B.; Kammerer, C.M.; Kato, N.; Lakka, T. A.; Leander, K.; Lehtimäki, T.; Lifelines Cohort Study; Magnusson, P. K. E.; Marques-Vidal, P.; Penninx, B. W. J. H.; Samani, N. J.; van der Harst, P.; Wagenknecht, L. E.; Wu, T.; Zheng, W.; Zhu, X.; Bouchard, C.; Cooper, R. S.; Correa, A.; Evans, M. K.; Gudnason, V.; Hayward, C.; Horta, B. L.; Kelly, T. N.; Kritchevsky, S. B.; Levy, D.; Palmas, W. R.; Pereira, A. C.; Province, M. M.; Psaty, B. M.; Ridker, P. M.; Rotimi, C. N.; Tai, E. S.; van Dam, R. M.; van Duijn, C. M.; Wong, T. Y.; Rice, K.; Gauderman, W. J.; Morrison, A. C.; North, K. E.; Kardia, S. L. R.; Caulfield, M. J.; Elliott, P.; Munroe, P. B.; Franks, P. W.; Rao, D. C.; Fornage, M.ABSTRACT:Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.Item Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci(Frontiers Research Foundation, 2023) de Las, F.L.; Schwande, K.L.; Brown, M.R.; Bentley, A.R.; Winkler, T.W.; Sung, Y.J.; Munroe, P.B.; Miller, C.L.; Aschard, H.; Aslibekyan, S.; Bartz, T.M.; Bielak, L.F.; Chai, J.F.; Cheng, C.Y.; Dorajoo, R.; Feitosa, M.F.; Guo, X.; Hartwig, F.P.; Horimoto, A.; Kolčić, I.; Lim, E.; Liu, Y.; Manning, A.K.; Marten, J.; Musani, S.K.; Noordam, R.; Padmanabhan, S.; Rankinen, T.; Richard, M.A.; Ridker, P.M.; Smith, A.V.; Vojinovic, D.; Zonderman, A.B.; Alver, M.; Boissel, M.; Christensen, K.; Freedman, B.I.; Gao, C.; Giulianini, F.; Harris, S.E.; He, M.; Hsu, F.C.; Kühnel, B.; Laguzzi, F.; Li, X.; Lyytikäinen, L.P.; Nolte, I.M.; Poveda, A.; Rauramaa, R.; Riaz, M.; Robino, A.; Sofer, T.; Takeuchi, F.; Tayo, B.O.; van der, M.P.J.; Verweij, N.; Ware, E.B.; Weiss, S.; Wen, W.; Yanek, L.R.; Zhan, Y.; Amin, N.; Arking, D.E.; Ballantyne, C.; Boerwinkle, E.; Brody, J.A.; Broeckel, U.; Campbell, A.; Canouil, M.; Chai, X.; Chen, Y.I.; Chen, X.; Chitrala, K.N.; Concas, M.P.; de Faire, U.; de Mutsert, R.; de Silva, H.J.; de Vries, P.S.; Do, A.; Faul, J.D.; Fisher, V.; Floyd, J.S.; Forrester, T.; Friedlander, Y.; Girotto, G.; Gu, C.C.; Hallmans, G.; Heikkinen, S.; Heng, C.K.; Homuth, G.; Hunt, S.; Ikram, M.A.; Jacobs, D.R.J.R.; Kavousi, M.; Khor, C.C.; Kilpeläinen, T.O.; Koh, W.P.; Komulainen, P.; Langefeld, C.D.; Liang, J.; Liu, K.; Liu, J.; Lohman, K.; Mägi, R.; Manichaikul, A.W.; McKenzie, C.A.; Meitinger, T.; Milaneschi, Y.; Nauck, M.; Nelson, C.P.; O'Connell, J.R.; Palmer, N.D.; Pereira, A.C.; Perls, T.; Peters, A.; Polašek, O.; Raitakari, O.T.; Rice, K.; Rice, T.K.; Rich, S.S.; Sabanayagam, C.; Schreiner, P.J.; Shu, X.; Sidney, S.; Sims, M.; Smith, J.A.; Starr, J.M.; Strauch, K.; Tai, E.S.; Taylor, K.D.; Tsai, M.Y.; Uitterlinden, A.G.; Heemst, D.V.; Waldenberger, M.; Wang, Y.; Wei, W.; Wilson, G.; Xuan, D.; Yao, J.; Yu, C.; Yuan, J.; Zhao, W.; Becker, D.M.; Bonnefond, A.; Bowden, D.W.; Cooper, R.S.; Deary, I.J.; Divers, J.; Esko, T.; Franks, P.W.; Froguel, P.; Gieger, C.; Jonas, J.B.; Kato, N.; Lakka, T.A.; Leander, K.; Lehtimäki, T.; Magnusson, P.K.E.; North, K.E.; Ntalla, I.; Penninx, B.; Samani, N.J.; Snieder, H.; Spedicati, B.; Harst, P.V.D.; Völzke, H.; Wagenknecht, L.E.; Weir, D.R.; Wojczynski, M.K.; Wu, T.; Zheng, W.; Zhu, X.; Bouchard, C.; Chasman, D.I.; Evans, M.K.; Fox, E.R.; Gudnason, V.; Hayward, C.; Horta, B.L.; Kardia, S.L.R.; Krieger, J.E.; Mook-Kanamori, D.O.; Peyser, P.A.; Province, M.M.; Psaty, B.M.; Rudan, I.; Sim, X.; Smith, B.H.; Dam, R.M.V.; Duijn, C.M.V.; Wong, T.Y.; Arnett, D.K.; Rao, D.C.; Gauderman, J.; Liu, C.; Morrison, A.C.; Rotter, J.I.; Fornage, M.INTRODUCTION: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. METHODS: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). RESULTS: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. DISCUSSION: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.Item Genome-wide association study in individuals of South Asian ancestry identifies six new type-2 diabetes susceptibility loci(Nature Publishing Company, 2011) Kooner, J.S.; Saleheen, D.; Sim, X.; Sehmi, J.; Zhang, W.; Frossard, P.; Been, L.F.; Chia, K.S.; Dimas, A.S.; Hassanali, N.; Jafar, T.; Jowett, J.B.; Li, X.; Radha, V.; Rees, S.D.; Takeuchi, F.; Young, R.; Aung, T.; Basit, A.; Chidambaram, M.; Das, D.; Grundberg, E.; Hedman, A.K.; Hydrie, Z.I.; Islam, M.; Khor, C.C.; Kowlessur, S.; Kristensen, M.M.; Liju, S.; Lim, W.Y.; Matthews, D.R.; Liu, J.; Morris, A.P.; Nica, A.C.; Pinidiyapathirage, M.J.; Prokopenko, I.; Rasheed, A.; Samuel, M.; Shah, N.; Shera, A.S.; Small, K.S.; Suo, C.; Wickremasinghe, A.R.; Wong, T.Y.; Yang, M.; Zhang, F.We carried out a genome-wide association study of type-2 diabetes (T2D) in individuals of South Asian ancestry. Our discovery set included 5,561 individuals with T2D (cases) and 14,458 controls drawn from studies in London, Pakistan and Singapore. We identified 20 independent SNPs associated with T2D at P < 10(-4) for testing in a replication sample of 13,170 cases and 25,398 controls, also all of South Asian ancestry. In the combined analysis, we identified common genetic variants at six loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2 and HNF4A) newly associated with T2D (P = 4.1 × 10(-8) to P = 1.9 × 10(-11)). SNPs at GRB14 were also associated with insulin sensitivity (P = 5.0 × 10(-4)), and SNPs at ST6GAL1 and HNF4A were also associated with pancreatic beta-cell function (P = 0.02 and P = 0.001, respectively). Our findings provide additional insight into mechanisms underlying T2D and show the potential for new discovery from genetic association studies in South Asians, a population with increased susceptibility to T2D.Item Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture oftype 2 diabetes susceptibility(Nature Publishing Company, 2014) Mahajan, A.; Go, M.J.; Zhang, W.; Below, J.E.; Gaulton, K.J.; Ferreira, T.; Horikoshi, M.; Johnson, A.D.; Ng, M.C.; Prokopenko, I.; Saleheen, D.; Wang, X.; Zeggini, E.; Abecasis, G.R.; Adair, L.S.; Almgren, P.; Atalay, M.; Aung, T.; Baldassarre, D.; Balkau, B.; Bao, Y.; Barnett, A.H.; Barroso, I.; Basit, A.; Been, L.F.; Beilby, J.; Bell, G.I.; Benediktsson, R.; Bergman, R.N.; Boehm, B.O.; Boerwinkle, E.; Bonnycastle, L.L.; Burtt, N.; Cai, Q.; Campbell, H.; Carey, J.; Cauchi, S.; Caulfield, M.; Chan, J.C.; Chang, L.C.; Chang, T.J.; Chang, Y.C.; Charpentier, G.; Chen, C.H.; Chen, H.; Chen, Y.T.; Chia, K.S.; Chidambaram, M.; Chines, P.S.; Cho, N.H.; Cho, Y.M.; Chuang, L.M.; Collins, F.S.; Cornelis, M.C.; Couper, D.J.; Crenshaw, A.T.; van Dam, R.M.; Danesh, J.; Das, D.; de Faire, U.; Dedoussis, G.; Deloukas, P.; Dimas, A.S.; Dina, C.; Doney, A.S.; Donnelly, P.J.; Dorkhan, M.; van Duijn, C.; Dupuis, J.; Edkins, S.; Elliott, P.; Emilsson, V.; Erbel, R.; Eriksson, J.G.; Escobedo, J.; Esko, T.; Eury, E.; Florez, J.C.; Fontanillas, P.; Forouhi, N.G.; Forsen, T.; Fox, C.; Fraser, R.M.; Frayling, T.M.; Froguel, P.; Frossard, P.; Gao, Y.; Gertow, K.; Gieger, C.; Gigante, B.; Grallert, H.; Grant, G.B.; Grrop, L.C.; Groves, C.J.; Grundberg, E.; Guiducci, C.; Hamsten, A.; Han, B.G.; Hara, K.; Hassanali, N.; Hattersley, A.T.; Hayward, C.; Hedman, A.K.; Herder, C.; Hofman, A.; Holmen, O.L.; Hovingh, K.; Hreidarsson, A.B.; Hu, C.; Hu, F.B.; Hui, J.; Humphries, S.E.; Hunt, S.E.; Hunter, D.J.; Hveem, K.; Hydrie, Z.I.; Ikegami, H.; Illig, T.; Ingelsson, E.; Islam, M.; Isomaa, B.; Jackson, A.U.; Jafar, T.; James, A.; Jia, W.; Jöckel, K.H.; Jonsson, A.; Jowett, J.B.; Kadowaki, T.; Kang, H.M.; Kanoni, S.; Kao, W.H.; Kathiresan, S.; Kato, N.; Katulanda, P.; Keinanen-Kiukaanniemi, K.M.; Kelly, A.M.; Khan, H.; Khaw, K.T.; Khor, C.C.; Kim, H.L.; Kim, S.; Kim, Y.J.; Kinnunen, L.; Klopp, N.; Kong, A.; Korpi-Hyövälti, E.; Kowlessur, S.; Kraft, P.; Kravic, J.; Kristensen, M.M.; Krithika, S.; Kumar, A.; Kumate, J.; Kuusisto, J.; Kwak, S.H.; Laakso, M.; Lagou, V.; Lakka, T.A.; Langenberg, C.; Langford, C.; Lawrence, R.; Leander, K.; Lee, J.M.; Lee, N.R.; Li, M.; Li, X.; Li, Y.; Liang, J.; Liju, S.; Lim, W.Y.; Lind, L.; Lindgren, C.M.; Lindholm, E.; Liu, C.T.; Liu, J.J.; Lobbens, S.; Long, J.; Loos, R.J.; Lu, W.; Luan, J.; Lyssenko, V.; Ma, R.C.; Maeda, S.; Mägi, R.; Männisto, S.; Matthews, D.R.; Meigs, J.B.; Melander, O.; Metspalu, A.; Meyer, J.; Mirza, G.; Mihailov, E.; Moebus, S.; Mohan, V.; Mohlke, K.L.; Morris, A.D.; Mühleisen, T.W.; Müller-Nurasyid, M.; Musk, B.; Nakamura, J.; Nakashima, E.; Navarro, P.; Ng, P.K.; Nica, A.C.; Nilsson, P.M.; Njolstad, I.; Nöthen, M.M.; Ohnaka, K.; Ong, T.H.; Owen, K.R.; Palmer, C.N.; Pankow, J.S.; Park, K.S.; Parkin, M.; Pechlivanis, S.; Pedersen, N.L.; Peltonen, L.; Perry, J.R.; Peters, A.; Pinidiyapathirage, J.M.; Platou, C.G.; Potter, S.; Price, J.F.; Qi, L.; Radha, V.; Rallidis, L.; Rasheed, A.; Rathman, W.; Rauramaa, R.; Raychaudhuri, S.; Rayner, N.W.; Rees, S.D.; Rehnberg, E.; Ripatti, S.; Robertson, N.; Roden, M.; Rossin, E.J.; Rudan, I.; Rybin, D.; Saaristo, T.E.; Salomaa, V.; Saltevo, J.; Samuel, M.; Sanghera, D.K.; Saramies, J.; Scott, J.; Scott, L.J.; Scott, R.A.; Segrè, A.V.; Sehmi, J.; Sennblad, B.; Shah, N.; Shah, S.; Shera, A.S.; Shu, X.O.; Shuldiner, A.R.; Sigurdsson, G.; Sijbrands, E.; Silveira, A.; Sim, X.; Sivapalaratnam, S.; Small, K.S.; So, W.Y.; Stancáková, A.; Stefansson, K.; Steinbach, G.; Steinthorsdottir, V.; Stirrups, K.; Strawbridge, R.J.; Stringham, H.M.; Sun, Q.; Suo, C.; Syvänen, A.C.; Takayanagi, R.; Takeuchi, F.; Tay, W.T.; Teslovich, T.M.; Thorand, B.; Thorleifsson, G.; Thorsteinsdottir, U.; Tikkanen, E.; Trakalo, J.; Tremoli, E.; Trip, M.D.; Tsai, F.J.; Tuomi, T.; Tuomilehto, J.; Uitterlinden, A.G.; Valladares-Salgado, A.; Vedantam, S.; Veglia, F.; Voight, B.F.; Wang, C.; Wareham, N.J.; Wennauer, R.; Wickremasinghe, A.R.; Wilsgaard, T.; Wilson, J.F.; Wiltshire, S.; Winckler, W.; Wong, T.Y.; Wood, A.R.; Wu, J.Y.; Wu, Y.; Yamamoto, K.; Yamauchi, T.; Yang, M.; Yengo, L.; Yokota, M.; Young, R.; Zabaneh, D.; Zhang, F.; Zhang, R.; Zheng., W.; Zimmet, P.Z.; Altshuler, D.; Bowden, D.W.; Cho, Y.S.; Cox, N.J.; Cruz, M.; Hanis, C.L.; Kooner, J.; Lee, J.Y.; Seielstad, M.; Teo, Y.Y.; Boehnke, M.; Parra, E.J.; Chambers, J.C.; Tai, E.S.; McCarthy, M.I.; Morris, A.P.To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.Item Implementation of a goal-directed Care Bundle for intracerebral hemorrhage: Results of embedded process evaluation in the INTERACT3 trial(Public Library of Science, 2024-12) Ouyang, M.; Anjum, A.; Cawley, F. G. M.; Wasay, M.; Ma, L.; Hu , X.; Chen, X.; Malavera, A.; Li, X.; Venturelli, P. M.; De Silva, H. A.; Thang, N. H.; Wahab, W. K.; Pandian, J. D.; Pontes-Neto, O. M.; Abanto , C.; Nigenda, V. C.; Arauz , A.; You , C.; Jan, S.; Song, L.; Anderson, C. S.; Liu, H.; INTERACT3 InvestigatorsThe third, stepped-wedge, cluster-randomized, Intensive Care Bundle with Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT3), has shown that a goal-directed multi-faceted Care Bundle incorporating protocols for the management of physiological variables was safe and effective for improving functional recovery in a broad range of patients with acute intracerebral hemorrhage (ICH). The INTERACT3 Care Bundle included time- and target-based protocols for the management of early intensive lowering of systolic blood pressure (SBP, target <140mmHg), glucose control (target 6.1-7.8 mmol/L in those without diabetes and 7.8-10.0 mmol/L in those with diabetes), anti-pyrexia treatment (target body temperature ≤37.5°C), and the rapid reversal of warfarin-related anticoagulation (target international normalized ratio <1.5). An embedded process evaluation was conducted to allow a better understanding of how the Care Bundle was implemented in different countries to enhance the transferability of this evidence in the international context. This study used a mixed-methods approach involving interviews, focus group discussions, and surveys to evaluate the implementation outcomes included fidelity, dose, reach, acceptability, appropriateness, adoption, and sustainability. Interviews (n = 27), focus group discussions (n = 3), and quantitative surveys (n = 48) were conducted in 7 low- and middle-income countries (LMICs) and 1 high-income country during 2019-2022. The Care Bundle was generally delivered as planned and well accepted by stakeholders, although some difficulties were reported in reaching the SBP and glycemic targets. Contextual factors including staff shortage, limited availability of antihypertensive drugs, and delayed systems of care processes, were common barriers to implementing the Care Bundle. Facilitating factors included good communication and collaboration with staff in emergency departments, the development of pathways within available resources, and regular training and monitoring. Our process evaluation provides useful insights into the contextual barriers which need to be addressed for effective scale up of the Care Bundle implementation in a global context.Item Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis(BioMed Central Ltd, 2022) Kanoni, S.; Graham, S.E.; Wang, Y.; Surakka, I.; Ramdas, S.; Zhu, X.; Clarke, S.L.; Bhatti, K.F.; Vedantam, S.; Winkler, T.W.; Locke, A.E.; Marouli, E.; Zajac, G.J.M.; Wu, K.H.; Ntalla, I.; Hui, Q.; Klarin, D.; Hilliard, A.T.; Wang, Z.; Xue, C.; Thorleifsson, G.; Helgadottir, A.; Gudbjartsson, D.F.; Holm, H.; Olafsson, I.; Hwang, M.Y.; Han, S.; Akiyama, M.; Sakaue, S.; Terao, C.; Kanai, M.; Zhou, W.; Brumpton, B.M.; Rasheed, H.; Havulinna, A.S.; Veturi, Y.; Pacheco, J.A.; Rosenthal, E.A.; Lingren, T.; Feng, Q.; Kullo, I.J.; Narita, A.; Takayama, J.; Martin, H.C.; Hunt, K.A.; Trivedi, B.; Haessler, J.; Giulianini, F.; Bradford, Y.; Miller, J.E.; Campbell, A.; Lin, K.; Lin, K.; Millwood, I.Y.; Rasheed, A.; Hindy, G.; Faul, J.D.; Zhao, W.; Weir, D.R.; Turman, C.; Huang, H.; Graff, M.; Choudhury, A.; Sengupta, D.; Mahajan, A.; Brown, M.R.; Zhang, W.; Yu, K.; Schmidt, E.M.; Pandit, A.; Gustafsson, S.; Yin, X.; Luan, J.; Zhao, J.H.; Matsuda, F.; Jang, H.M.; Yoon, K.; Medina-Gomez, C.; Pitsillides, A.; Hottenga, J.J.; Wood, A.R.; Ji, Y.; Gao, Z.; Haworth, S.; Yousri, N.A.; Mitchell, R.E.; Chai, J.F.; Aadahl, M.; Bjerregaard, A.A.; Yao, J.; Manichaikul, A.; Hwu, C.M.; Hung, Y.J.; Warren, H.R.; Ramirez, J.; Bork-Jensen, J.; Kårhus, L.L.; Goel, A.; Sabater-Lleal, M.; Noordam, R.; Mauro, P.; Matteo, F.; McDaid, A.F.; Marques-Vidal, P.; Wielscher, M.; Trompet, S.; Sattar, N.; Møllehave, L.T.; Munz, M.; Zeng, L.; Huang, J.; Yang, B.; Poveda, A.; Kurbasic, A.; Lamina, C.; Forer, L.; Scholz, M.; Galesloot, T.E.; Bradfield, J.P.; Ruotsalainen, S.E.; Daw, E.; Zmuda, J.M.; Mitchell, J.S.; Fuchsberger, C.; Christensen, H.; Brody, J.A.; Vazquez-Moreno, M.; Feitosa, M.F.; Wojczynski, M.K.; Wang, Z.; Preuss, M.H.; Mangino, M.; Christofidou, P.; Verweij, N.; Benjamins, J.W.; Engmann, J.; Tsao, N.L.; Verma, A.; Slieker, R.C.; Lo, K.S.; Zilhao, N.R.; Le, P.; Kleber, M.E.; Delgado, G.E.; Huo, S.; Ikeda, D.D.; Iha, H.; Yang, J.; Liu, J.; Demirkan, A.; Leonard, H.L.; Marten, J.; Frank, M.; Schmidt, B.; Smyth, L.J.; Cañadas-Garre, M.; Wang, C.; Nakatochi, M.; Wong, A.; Hutri-Kähönen, N.; Lyssenko, V.; Fernandez-Lopez, J.C.; Huerta-Chagoya, A.; Xia, R.; Sim, X.; Nongmaithem, S.S.; Bayyana, S.; Stringham, H.M.; Irvin, M.R.; Oldmeadow, C.; Kim, H.N.; Ryu, S.; Timmers, P,R,H,J,; Arbeeva, L.; Dorajoo, R.; Lange, L.A.; Prasad, G.; Lorés-Motta, L.; Pauper, M.; Long, J.; Li, X.; Theusch, E.; Takeuchi, F.; Spracklen, C.N.; Loukola, A.; Bollepalli, S.; Warner, S.C.; Wang, Y.X.; Wei, W.B.; Nutile, T.; Ruggiero, D.; Sung, Y.J.; Chen, S.; Liu, F.; Yang, J.; Kentistou, K.A.; Banas, B.; Nardone, G.G.; Meidtner, K.; Bielak, L.F.; Smith, J.A.; Hebbar, P.; Farmaki, A.E.; Hofer, E.; Lin, M.; Concas, M.P.; Vaccargiu, S.; van der Most, P.J.; Pitkänen, N.; Cade, B.E.; van der Laan, S.W.; Chitrala, K.N.; Weiss, S.; Bentley, A.R.; Doumatey, A.P.; Adeyemo, A.A.; Lee, J.Y.; Petersen, E.R.B.; Nielsen, A.A.; Choi, H.S.; Nethander, M.; Freitag-Wolf, S.; Southam, L.; Rayner, N.W.; Wang, C.A.; Lin, S.Y.; Wang, J.S.; Couture, C.; Lyytikäinen, L.P.; Nikus, K.; Cuellar-Partida, G.; Vestergaard, H.; Hidalgo, B.; Giannakopoulou, O.; Cai, Q.; Obura, M.O.; van Setten, J.; Li, X.; Liang, J.; Tang, H.; Terzikhan, N.; Shin, J.H.; Jackson, R.D.; Reiner, A.P.; Martin, L.W.; Chen, Z.; Li, L.; Kawaguchi, T.; Thiery, J.; Bis, J.C.; Launer, L.J.; Li, H.; Nalls, M.A.; Raitakari, O.T.; Ichihara, S.; Wild, S.H.; Nelson, C.P.; Campbell, H.; Jäger, S.; Nabika, T.; Al-Mulla, F.; Niinikoski, H.; Braund, P.S.; Kolcic, I.; Kovacs, P.; Giardoglou, T.; Katsuya, T.; de Kleijn, D.; de Borst, G.J.; Kim, E.K.; Adams, H.H.H.; Ikram, M.A.; Zhu, X.; Asselbergs, F.W.; Kraaijeveld, A.O.; Beulens, J.W.J.; Shu, X.O.; Rallidis, L.S.; Pedersen, O.; Hansen, T.; Mitchell, P.; Hewitt, A.W.; Kähönen, M.; Pérusse, L.; Bouchard, C.; Tönjes, A.; Chen, Y.I.; Pennell, C.E.; Mori, T.A.; Lieb, W.; Franke, A.; Ohlsson, C.; Mellström, D.; Cho, Y.S.; Lee, H.; Yuan, J.M.; Koh, W.P.; Rhee, S.Y.; Woo, J.T.; Heid, I.M.; Stark, K.J.; Zimmermann, M.E.; Völzke, H.; Homuth, G.; Evans, M.K.; Zonderman, A.B.; Polasek, O.; Pasterkamp, G.; Hoefer, I.E.; Redline, S.; Pahkala, K.; Oldehinkel, A.J.; Snieder, H.; Biino, G.; Schmidt, R.; Schmidt, H.; Bandinelli, S.; Dedoussis, G.; Thanaraj, T.A.; Kardia, S.L.R.; Peyser, P.A.; Kato, N.; Schulze, M.B.; Girotto, G.; Böger, C.A.; Jung, B.; Joshi, P.K.; Bennett, D.A.; de Jager, P.L.; Lu, X.; Mamakou, V.; Brown, M.; Caulfield, M.J.; Munroe, P.B.; Guo, X.; Ciullo, M.; Jonas, J.B.; Samani, N.J.; Kaprio, J.; Pajukanta, P.; Tusié-Luna, T.; Aguilar-Salinas, C.A.; Adair, L.S.; Bechayda, S.A.; de Silva, H.J.; Wickremasinghe, A.R.; Krauss, R.M.; Wu, J.Y.; Zheng, W.; Hollander, A.I.; Bharadwaj, D.; Correa, A.; Wilson, J.G.; Lind, L.; Heng, C.K.; Nelson, A.E.; Golightly, Y.M.; Wilson, J.F.; Penninx, B.; Kim, H.L.; Attia, J.; Scott, R.J.; Rao, D.C.; Arnett, D.K.; Hunt, S.C.; Walker, M.; Koistinen, H.A.; Chandak, G.R.; Mercader, J.M.; Costanzo, M.C.; Jang, D.; Burtt, N.P.; Villalpando, C.G.; Orozco, L.; Fornage, M.; Tai, E.; van Dam, R.M.; Lehtimäki, T.; Chaturvedi, N.; Yokota, M.; Liu, J.; Reilly, D.F.; McKnight, A.J.; Kee, F.; Jöckel, K.H.; McCarthy, M.I.; Palmer, C.N.A.; Vitart, V.; Hayward, C.; Simonsick, E.; van Duijn, C.M.; Jin, Z.B.; Qu, J.; Hishigaki, H.; Lin, X.; März, W.; Gudnason, V.; Tardif, J.C.; Lettre, G.; Hart, L.M.; Elders, P.J.M.; Damrauer, S.M.; Kumari, M.; Kivimaki, M.; van der Harst, P.; Spector, T.D.; Loos, R.J.F.; Province, M.A.; Parra, E.J.; Cruz, M.; Psaty, B.M.; Brandslund, I.; Pramstaller, P.P.; Rotimi, C.N.; Christensen, K.; Ripatti, S.; Widén, E.; Hakonarson, H.; Grant, S.F.A.; Kiemeney, L.A.L.M.; de Graaf, J.; Loeffler, M.; Kronenberg, F.; Gu, D.; Erdmann, J.; Schunkert, H.; Franks, P.W.; Linneberg, A.; Jukema, J.W.; Khera, A.V.; Männikkö, M.; Jarvelin, M.R.; Kutalik, Z.; Francesco, C.; Mook-Kanamori, D.O.; van Dijk, K.W.; Watkins, H.; Strachan, D.P.; Grarup, N.; Sever, P.; Poulter, N.; Chuang, L.M.; Rotter, J.I.; Dantoft, T.M.; Karpe, F.; Neville, M.J.; Timpson, N.J.; Cheng, C.Y.; Wong, T.Y.; Khor, C.C.; Li, H.; Sabanayagam, C.; Sabanayagam, C.; Peters, A.; Gieger, C.; Hattersley, A.T.; Pedersen, N.L.; Magnusson, P.K.E.; Boomsma, D.I.; Willemsen, A.H.M.; Cupples, L.; van Meurs, J.B.J.; Ghanbari, M.; Gordon-Larsen, P.; Huang, W.; Kim, Y.J.; Tabara, Y.; Wareham, N.J.; Langenberg, C.; Zeggini, E.; Kuusisto, J.; Laakso, M.; Ingelsson, E.; Abecasis, G.; Chambers, J.C.; Kooner, J.S.; de Vries, P.S.; Morrison, A.C.; Hazelhurst, S.; Ramsay, M.; North, K.E.; Daviglus, M.; Kraft, P.; Martin, N.G.; Whitfield, J.B.; Abbas, S.; Saleheen, D.; Walters, R.G.; Holmes, M.V.; Black, C.; Smith, B.H.; Baras, A.; Justice, A.E.; Buring, J.E.; Ridker, P.M.; Chasman, D.I.; Kooperberg, C.; Tamiya, G.; Yamamoto, M.; van Heel, D.A.; Trembath, R.C.; Wei, W.Q.; Jarvik, G.P.; Namjou, B.; Hayes, M.G.; Ritchie, M.D.; Jousilahti, P.; Salomaa, V.; Hveem, K.; Åsvold, B.O.; Kubo, M.; Kamatani, Y.; Okada, Y.; Murakami, Y.; Kim, B.J.; Thorsteinsdottir, U.; Stefansson, K.; Zhang, J.; Chen, Y.; Ho, Y.L.; Lynch, J.A.; Rader, D.J.; Tsao, P.S.; Chang, K.M.; Cho, K.; O'Donnell, C.J.; Gaziano, J.M.; Wilson P.W.F.; Frayling, T.M.; Hirschhorn, J.N.; Kathiresan, S.; Mohlke, K.L.; Sun, Y.V.; Morris, A.P.; Boehnke, M.; Brown, C.D.; Natarajan, P.; Deloukas, P.; Willer, C.J.; Assimes, T.L.; Peloso, G.M.BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Item Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.(Nature Publications, 2019) Kilpeläinen, T.O.; Bentley, A.R.; Noordam, R.; Sung, Y. J.; Schwander, K.; Winkler, T. W.; Jakupović, H.; Chasman, D. I.; Manning, A.; Ntalla, I.; Aschard, H.; Brown, M. R.; de Las Fuentes, L.; Franceschini, N.; Guo, X.; Vojinovic, D.; Aslibekyan, S.; Feitosa, M. F.; Kho, M.; Musani, S. K.; Richard, M.; Wang, H.; Wang, Z.; Bartz, T. M.; Bielak, L. F.; Campbell, A.; Dorajoo, R.; Fisher, V.; Hartwig, F. P.; Horimoto, A. R. V. R.; Li, C.; Lohman, K. K.; Marten, J.; Sim, X.; Smith, A. V.; Tajuddin, S. M.; Alver, M.; Amini, M.; Boissel, M.; Chai, J. F.; Chen, X.; Divers, J.; Evangelou, E.; Gao, C.; Graff, M.; Harris, S. E.; He, M.; Hsu, F. C.; Jackson, A. U.; Zhao, J. H.; Kraja, A. T.; Kühnel, B.; Laguzzi, F.; Lyytikäinen, L. P.; Nolte, I. M.; Rauramaa, R.; Riaz, M.; Robino, A.; Rueedi, R.; Stringham, H. M.; Takeuchi, F.; van der Most, P. J.; Varga, T. V.; Verweij, N.; Ware, E. B.; Wen, W.; Li, X.; Yanek, L. R.; Amin, N.; Arnett, D. K.; Boerwinkle, E.; Brumat, M.; Cade, B.; Canouil, M.; Chen, Y. I.; Concas, M. P.; Connell, J.; de Mutsert, R.; de Silva, H.J.; de Vries, P.S.; Demirkan, A.; Ding, J.; Eaton, C. B.; Faul, J. D.; Friedlander, Y.; Gabriel, K. P.; Ghanbari, M.; Giulianini, F.; Gu, C. C.; Gu, D.; Harris, T. B.; He J, J.; Heikkinen, S.; Heng, C. K.; Hunt, S. C.; Ikram, M. A.; Jonas, J. B.; Koh, W. P.; Komulainen, P.; Krieger, J. E.; Kritchevsky, S. B.; Kutalik, Z.; Kuusisto, J.; Langefeld, C. D.; Langenberg, C.; Launer, L. J.; Leander, K.; Lemaitre, R. N.; Lewis, C. E.; Liang, J.; Lifelines Cohort Study; Liu, J.; Mägi, R.; Manichaikul, A.; Meitinger, T.; Metspalu, A.; Milaneschi, Y.; Mohlke, K. L.; Mosley, T. H.; Murray, A. D.; Nalls, M. A.; Nang, E. K.; Nelson, C. P.; Nona, S.; Norris, J. M.; Nwuba, C. V.; O'Connell, J.; Palmer, N. D.; Papanicolau, G. J.; Pazoki, R.; Pedersen, N. L.; Peters, A.; Peyser, P. A.; Polasek, O.; Porteous, D. J.; Poveda, A.; Raitakari, O. T.; Rich, S. S.; Risch, N.; Robinson, J. G.; Rose, L. M.; Rudan, I.; Schreiner, P. J.; Scott, R. A.; Sidney, S. S.; Sims, M.; Smith, J. A.; Snieder, H.; Sofer, T.; Starr, J. M.; Sternfeld, B.; Strauch, K.; Tang, H.; Taylor, K. D.; Tsai, M. Y.; Tuomilehto, J.; Uitterlinden, A. G.; van der Ende, M. Y.; van Heemst, D.; Voortman, T.; Waldenberger, M.; Wennberg, P.; Wilson, G.; Xiang, Y. B.; Yao, J.; Yu, C.; Yuan, J. M.; Zhao, W.; Zonderman, A. B.; Becker, D. M.; Boehnke, M.; Bowden, D. W.; de Faire, U.; Deary, I. J.; Elliott, P.; Esko, T.; Freedman, B. I.; Froguel, P.; Gasparini, P.; Gieger, C.; Kato, N.; Laakso, M.; Lakka, T. A.; Lehtimäki, T.; Magnusson, P. K. E.; Oldehinkel, A. J.; Penninx, B. W. J. H.; Samani, N. J.; Shu, X. O.; van der Harst, P.; Van Vliet-Ostaptchouk, J. V.; Vollenweider, P.; Wagenknecht, L. E.; Wang, Y. X.; Wareham, N. J.; Weir, D. R.; Wu, T.; Zheng, W.; Zhu, X.; Evans, M. K.; Franks, P. W.; Gudnason, V.; Hayward, C.; Horta, B. L.; Kelly, T. N.; Liu, Y.; North, K. E.; Pereira, A. C.; Ridker, P. M.; Tai, E. S.; van Dam, R. M.; Fox, E. R.; Kardia, S. L. R.; Liu, C. T.; Province, M. A.; Mook-Kanamori, D. O.; Redline, S.; van Duijn, C. M.; Rotter, J. I.; Kooperberg, C. B.; Gauderman, W. J.; Psaty, B. M.; Rice, K.; Munroe, P. B.; Fornage, M.; Cupples, L. A.; Rotimi, C. N.; Morrison, A. C.; Rao, D. C.; Loos, R. J. F.Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.Item A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids(American Society of Human Genetics., 2022) Ramdas, S.; Judd, J.; Graham, S.E.; Kanoni, S.; Wang, Y.; Surakka, I.; Wenz, B.; Clarke, S.L.; Chesi, A.; Wells, A.; Bhatti, K.F.; Vedantam, S.; Winkler, T.W.; Locke, A.E.; Marouli, E.; Zajac, G.J.M.; Wu, K.H.; Ntalla, I.; Hui, Q.; Klarin, D.; Hilliard, A.T.; Wang, Z.; Xue, C.; Thorleifsson, G.; Helgadottir, A.; Gudbjartsson, D.F.; Holm, H.; Olafsson, I.; Hwang, M.Y.; Han, S.; Akiyama, M.; Sakaue, S.; Terao, C.; Kanai, M.; Zhou, W.; Brumpton, B.M.; Rasheed, H.; Havulinna, A.S.; Veturi, Y.; Pacheco, J.A.; Rosenthal, E.A.; Lingren, T.; Feng, Q.; Kullo, I.J.; Narita, A.; Takayama, J.; Martin, H.C.; Hunt, K.A.; Trivedi, B.; Haessler, J.; Giulianini, F.; Bradford, Y.; Miller, J.E.; Campbell, A.; Lin, K.; Millwood, I.Y.; Rasheed, A.; Hindy, G.; Faul, J.D.; Zhao, W.; Weir, D.R.; Turman, C.; Huang, H.; Graff, M.; Choudhury, A.; Sengupta, D.; Mahajan, A.; Brown, M.R.; Zhang, W.; Yu, K.; Schmidt, E.M.; Pandit, A.; Gustafsson, S.; Yin, X.; Luan, J.; Zhao, J.H.; Matsuda, F.; Jang, H.M.; Yoon, K.; Gomez, C.M.; Pitsillides, A.; Hottenga, J.J.; Wood, A.R.; Ji, Y.; Gao, Z.; Haworth, S.; Mitchell, R.E.; Chai, J.F.; Aadahl, M.; Bjerregaard, A.A.; Yao, J.; Manichaikul, A.; JaneLee, W.; Hsiung, C.A.; Warren, H.R.; Ramirez, J.; Jensen, J.B.; Kårhus, L.; Goel, A.; Lleal, M.S.; Noordam, R.; Mauro, P.; Matteo, F.; McDaid, A.F.; Marques-Vidal, P.; Wielscher, M.; Trompet, S.; Sattar, N.; Møllehave, L.T.; Munz, M.; Zeng, L.; Huang, J.; Yang, B.; Poveda, A.; Kurbasic, A.; Schönherr, S.; Forer, L.; Scholz, M.; Galesloot, T.E.; Bradfield, J.P.; Ruotsalainen, S.E.; Daw, E.W.; Zmuda, J.M; Mitchell, J.S.; Fuchsberger, C.; Christensen, H.; Brody, J.A.; Le, P.; Feitosa, M.F.; Wojczynski, M.K.; Hemerich, D.; Preuss, M.; Mangino, M.; Christofidou, P.; Verweij, N.; Benjamins, J.W.; Engmann, J.; Noah, T.L.; Verma, A.; Slieker, R.C.; Lo, K.S.; Zilhao, N.R.; Kleber, M.E.; Delgado, G.E.; Huo, S.; Ikeda, D.D.; Iha, H.; Yang, J.; Liu, J.; Demirkan, A.; Leonard, H.L.; Marten,J.; Emmel, C.; Schmidt, B.; Smyth, L.J.; Cañadas-Garre, M.; Wang, C.; Nakatochi, M.; Wong, A.; Hutri-Kähönen , N.; Sim, X.; Xia, R.; Huerta-Chagoya, A.; Fernandez-Lopez, J.C.; Lyssenko, V; Nongmaithem, S.S.; Sankareswaran, A.; Irvin, M.R.; Oldmeadow, C.; Kim, H.N.; Ryu, S.; Timmers, P.R.H.J; Arbeeva, L.; Dorajoo, R.; Lange, L.A.; Prasad, G.; Lorés-Motta, L.; Pauper, M.; Long, J.; Li, X.; Theusch, E.; Takeuchi, F.; Spracklen, C.N.; Loukola, A.; Bollepalli, S.; Warner, S.C.; Wang, Y.X.; Wei, W.B.; Nutile, T.; Ruggiero, D.; Sung,Y.J.; Chen, S.; Liu, F.; Yang, J.; Kentistou, K.A.; Banas, B.; Morgan, A.; Meidtner, K.; Bielak, L.F.; Smith, J.A.; Hebbar, P.; Farmaki, A.E.; Hofer, E.; Lin, M.; Concas, M.P.; Vaccargiu, S.; Most, P.J.; Pitkänen, N.; Cade, B.E.; Laan, S.W.; Chitrala, K.N.; Weiss, S.; Bentley, A.R.; Doumatey, A.P.; Adeyemo, A.A.; Lee, J.Y.; Petersen, E.R.B.; Nielsen, A.A.; Choi, H.S.; Nethander, M.; Nethander, M.; Freitag-Wolf, S.; Southam, L.; Rayner, N.W.; Wang, C.A.; Lin, S.; Wang, J.S.; Couture, C.; Lyytikäinen, L.P.; Nikus, K.; Partida, G.C.; Vestergaard, H.; Hidalgo, B.; Giannakopoulou, O.; Cai, Q.; Obura, M.O.; Setten, J.; He, K.Y.; Tang, H.; Terzikhan, N.; Shin, J.H.; Jackson, R.D.; Reiner, A.P.; Martin, L.W.; Chen, Z.; Li, L.; Kawaguchi, T.; Thiery, J.; Bis, J.C.; Launer, L.J.; Li, H.; Nalls, M.A.; Raitakari, O.T.; Ichihara, S.; Wild, S.H.; Nelson, C.P.; Campbell, H.; Jäger, S.; Nabika, T.; Al-Mulla, F.; Niinikoski, H.; Braund, P.S.; Kolcic, I.; Kovacs, P.; Giardoglou, T.; Katsuya, T.; Kleijn, D.; Borst, G.J.; Kim, E.K.; Adams, H.H.H.; Ikram, M.A.; Zhu, X.; Asselbergs, F.W.; Kraaijeveld, A.O.; Beulens, J.W.J.; Shu, X.O.; Rallidis, L.S.; Pedersen, O.; Hansen, T.; Mitchell, P.; Hewitt, A.W.; Kähönen, M.; Pérusse, L.; Bouchard, C.; Tönjes, A.; Chen, Y.D.I; Pennell, C.E.; Mori, T.A.; Lieb, W.; Franke, A.; Ohlsson, C.; Mellström, D.; Cho, Y.S.; Lee, H.; Yuan, J.M.; Koh, W.P.; Rhee, S.Y.; Woo, J.T.; Heid, I.M.; Stark, K.J.; Zimmermann, M.E.; Völzke, H.; Homuth, G.; Homuth, G.; Evans, M.K.; Zonderman, A.B.; Polasek, O.; Pasterkamp, G.; Hoefer, I.E.; Redline, S.; Pahkala, K.; Oldehinkel, A.J.; Snieder, H.; Biino, G.; Schmidt, R.; Schmidt, H.; Bandinelli , S; Dedoussis, G.; Thanaraj, T.A.; Peyser, P.A.; Kato, N.; Schulze, M.B.; Girotto, G.; Böger, C.A.; Jung, B.; Joshi, P.K.; Bennett, D.A.; Jager, P.L.D.; Lu, X.; Mamakou, V.; Brown, M.; Caulfield, M.J.; Munroe, P.B.; Guo, X.; Ciullo, M.; Jonas, J.B.; Samani, N.J.; Kaprio, J.; Pajukanta, P.; Luna, T.T.; Salinas, C.A.A.; Adair, L.S.; Bechayda, S.A.; de Silva, H.J.; Wickremasinghe, A.R.; Krauss, R.M.; Wu, J.Y.; Zheng,W.; Hollander, A.I.; Bharadwaj, D.; Correa, A,; Wilson, J.G.; Lind, L.; Heng, C.K.; Nelson, A.E.; Golightly, Y.M.; Wilson, J.F.; Penninx, B.; Kim, H.L.; Attia, J.; Scott, R.J.; Rao, D.C.; Arnett, D.K.; Walker, M.; Scott, L.J.; Koistinen, H.A.; Chandak, G.R.; Mercader, J.M.; Villalpando, C.G.; Orozco, L.; Fornage, M.; Tai, E.S.; Dam, R.M.; Lehtimäki, T.; Chaturvedi, N.; Yokota, M.; Liu, J.; Reilly, D.F.; McKnight, A.J.; Kee, F.; Jöckel, K.H.; McCarthy, M.I.; Palmer, C.N.A.; Vitart, V.; Hayward, C.; Simonsick, E.; Duijn, C.M; Jin, Z.B.; Jin, Z.B.; Lu, F.; Hishigaki, H.; Lin, X.; März, W.; Gudnason, V.; Tardif, J.C.; Lettre, G.; Hart, L.M.T.; Elders, P.J.M.; Rader, D.J.; Loos, S.M.; Province, M.A.; Parra, E.J.; Cruz, M.; Psaty, B.M.; Brandslund, I.; Pramstaller, P.P.; Rotimi, C.N.; Christensen, K.; Ripatti, S.; Widén, E.; Hakonarson, H.; Grant, S.F.A.; Kiemeney, L.; de Graaf, J.; Loeffler, M.; Kronenberg, F.; Gu, D.; Erdmann, J.; Schunkert, H.; Franks,P.W.; Linneberg, A.; Jukema, J.W.; Khera, A.V.; Männikkö, M.; Jarvelin, M.R.; Kutalik, Z.; Francesco, C.; Kanamori, D.O.M.; Dijk, K.W.; Watkins, H.; Strachan, D.P.; Grarup, N.; Sever, P.; Poulter, N.; Sheu, W.H.H.; Rotter, J.I.; Dantoft, T.M.; Karpe, F.; Neville, M.J.; Timpson, N.J.; Cheng, C.Y.; Wong, T.Y.; Khor, C.C.; Li, H.; Sabanayagam, C.; Peters, A.; Gieger, C.; Hattersley, A.T.; Pedersen, N.L.; Magnusson, P.K.E.; Boomsma, D.I.; de Geus, E.J.C.; Cupples, L.A.; Meurs, J.B.J.; Ikram, A.; Ghanbari, M.; Larsen, P.G.; Huang, W.; Kim, Y.J.; Tabara, Y.; Wareham, N.J.; Langenberg, C.; Zeggini, E.; Tuomilehto, J.; Kuusisto, J.; Laakso, M.; Ingelsson, E.; Abecasis, G.; Chambers, J.C.; Kooner, J.S.; de Vries, P.S.; Morrison, A.C.; Hazelhurst, S.; Ramsay, M.; North, K.E.; Daviglus, M.; Kraft, P.; Martin, N.G.; Whitfield, J.B.; Abbas, S.; Saleheen, D.; Walters, R.G.; Holmes, M.V.; Black, C.; Smith, B.H.; Baras, A.; Justice, A.E.; Buring, J.E.; Ridker, P.M.; Chasman, D.I.; Kooperberg, C.; Tamiya, G.; Yamamoto, M.; Heel, D.A.; Trembath, R.C.; Wei, W.Q.; Jarvik, G.P.; Namjou, B.; Hayes, M.G.; Ritchie, M.D.; Jousilahti, P.; Salomaa, V.; Hveem, K.; Åsvold, B.O.; Kubo, M.; Kamatani, Y.; Okada, Y.; Murakami, Y.; Kim, B.J.; Thorsteinsdottir, U.; Stefansson, K.; Zhang, J.; Chen, Y.E.; Ho, Y.L.; Lynch, J.A.; Tsao, P.S.; Chang, K.M.; Cho, K.; O'Donnell, C.J.; Gaziano, J.M.; Wilson, P.; Mohlke, K.L.; Frayling, T.M.; Hirschhorn, J.N.; Kathiresan, S.; Boehnke, M.; Million Veterans Program; Global Lipids Genetics Consortium; Grant, S.; Natarajan, P.; Sun, Y.V.; Morris, A.P.; Deloukas, P.; Peloso, G.; Assimes, T.L.; Willer, C.J.; Zhu, X.; Brown, C.D.A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.Item The power of genetic diversity in genome-wide association studies of lipids(Macmillan Journals Ltd, 2021) Graham, S.E.; Clarke, S.L.; Wu, K.H.; Kanoni, S.; Zajac, G.J.M.; Ramdas, S.; Surakka, I.; Ntalla, I.; Vedantam, S.; Winkler, T.W.; Locke, A.E.; Marouli, E.; Hwang, M.Y.; Han, S.; Narita, A.; Choudhury, A.; Bentley, A.R.; Ekoru, K.; Verma, A.; Trivedi, B.; Martin, H.C.; Hunt, K.A.; Hui, Q.; Klarin, D.; Zhu, X.; Thorleifsson, G.; Helgadottir, A.; Gudbjartsson, D.F.; Holm, H.; Olafsson, I.; Akiyama, M.; Sakaue, S.; Terao, C.; Kanai, M.; Zhou, W.; Brumpton, B.M.; Rasheed, H.; Ruotsalainen, S.E.; Havulinna, A.S.; Veturi, Y.; Feng, Q.; Rosenthal, E.A.; Lingren, T.; Pacheco, J.A.; Pendergrass, S.A.; Haessler, J.; Giulianini, F.; Bradford, Y.; Miller, J.E.; Campbell, A.; Lin, K.; Millwood, I.Y.; Hindy, G.; Rasheed, A.; Faul, J.D.; Zhao, W.; Weir, D.R.; Turman, C.; Huang, H.; Graff, M.; Mahajan, A.; Brown, M.R.; Zhang, W.; Yu, K.; Schmidt, E.M.; Pandit, A.; Gustafsson, S.; Yin, X.; Luan, J.; Zhao, J.H.; Matsuda, F.; Jang, H.M.; Yoon, K.; Medina-Gomez, C.; Pitsillides, A.; Hottenga, J.J.; Willemsen, G.; Wood, A.R.; Ji, Y.; Gao, Z.; Haworth, S.; Mitchell, R.E.; Chai, J.F.; Aadahl, M.; Yao, J.; Manichaikul, A.; Warren, H.R.; Ramirez, J.; Bork-Jensen, J.; Kårhus, L.L.; Goel, A.; Sabater-Lleal, M.; Noordam, R.; Sidore, C.; Fiorillo, E.; McDaid, A.F.; Marques-Vidal, P.; Wielscher, M.; Trompet, S.; Sattar, N.; Møllehave, L.T.; Thuesen, B.H.; Munz, M.; Zeng, L.; Huang, J.; Yang, B.; Poveda, A.; Kurbasic, A.; Lamina, C.; Forer, L.; Scholz, M.; Galesloot, T.E.; Bradfield, J.P.; Daw, E.W.; Zmuda, J.M.; Mitchell, J.S.; Fuchsberger, C.; Christensen, H.; Brody, J.A.; Feitosa, M.F.; Wojczynski, M.K.; Preuss, M.; Mangino, M.; Christofidou, P.; Verweij, N.; Benjamins, J.W.; Engmann, J.; Kember, R.L.; Slieker, R.C.; Lo, K.S.; Zilhao, N.R.; Le, P.; Kleber, M.E.; Delgado, G.E.; Huo, S.; Ikeda, D.D.; Iha, H.; Yang, J.; Liu, J.; Leonard, H.L.; Marten, J.; Schmidt, B.; Arendt, M.; Smyth, L.J.; Cañadas-Garre, M.; Wang, C.; Nakatochi, M.; Wong, A.; Hutri-Kähönen, N.; Sim, X.; Xia, R.; Huerta-Chagoya, A.; Fernandez-Lopez, J.C.; Lyssenko, V.; Ahmed, M.; Jackson, A.U.; Irvin, M.R.; Oldmeadow, C.; Kim, H.N.; Ryu, S.; Timmers, P.R.H.J.; Arbeeva, L.; Dorajoo, R.; Lange, L.A.; Chai, X.; Prasad, G.; Lorés-Motta, L.; Pauper, M.; Long, J.; Li, X.; Theusch, E.; Takeuchi, F.; Spracklen, C.N.; Loukola, A.; Bollepalli, S.; Warner, S.C.; Wang, Y.X.; Wei, W.B.; Nutile, T.; Ruggiero, D.; Sung, Y.J.; Hung, Y.J.; Chen, S.; Liu, F.; Yang, J.; Kentistou, K.A.; Gorski, M.; Brumat, M.; Meidtner, K.; Bielak, L.F.; Smith, J.A.; Hebbar, P.; Farmaki, A.E.; Hofer, E.; Lin, M.; Xue, C.; Zhang, J.; Concas, M.P.; Vaccargiu, S.; van der Most, P.J.; Pitkänen, N.; Cade, B.E.; Lee, J.; van der Laan, S.W.; Chitrala, K.N.; Weiss, S.; Zimmermann, M.E.; Lee, J.Y.; Choi, H.S.; Nethander, M.; Freitag-Wolf, S.; Southam, L.; Rayner, N.W.; Wang, C.A.; Lin, S.Y.; Wang, J.S.; Couture, C.; Lyytikäinen, L.P.; Nikus, K.; Cuellar-Partida, G.; Vestergaard, H.; Hildalgo, B.; Giannakopoulou, O.; Cai, Q.; Obura, M.O.; van Setten, J.; Li, X.; Schwander, K.; Terzikhan, N.; Shin, J.H.; Jackson, R.D.; Reiner, A.P.; Martin, L.W.; Chen, Z.; Li, L.; Highland, H.M.; Young, K.L.; Kawaguchi, T.; Thiery, J.; Bis, J.C.; Nadkarni, G.N.; Launer, L.J.; Li, H.; Nalls, M.A.; Raitakari, O.T.; Ichihara, S.; Wild, S.H.; Nelson, C.P.; Campbell, H.; Jäger, S.; Nabika, T.; Al-Mulla, F.; Niinikoski, H.; Braund, P.S.; Kolcic, I.; Kovacs, P.; Giardoglou, T.; Katsuya, T.; Bhatti, K.F.; de Kleijn, D.; de Borst, G.J.; Kim, E.K.; Adams, H.H.H.; Ikram, M.A.; Zhu, X.; Asselbergs, F.W.; Kraaijeveld, A.O.; Beulens, J.W.J.; Shu, X.O.; Rallidis, L.S.; Pedersen, O.; Hansen, T.; Mitchell, P.; Hewitt, A.W.; Kähönen, M.; Pérusse, L.; Bouchard, C.; Tönjes, A.; Chen, Y.I.; Pennell, C.E.; Mori, T.A.; Lieb, W.; Franke, A.; Ohlsson, C.; Mellström, D.; Cho, Y.S.; Lee, H.; Yuan, J.M.; Koh, W.P.; Rhee, S.Y.; Woo, J.T.; Heid, I.M.; Stark, K.J.; Völzke, H.; Homuth, G.; Evans, M.K.; Zonderman, A.B.; Polasek, O.; Pasterkamp, G.; Hoefer, I.E.; Redline, S.; Pahkala, K.; Oldehinkel, A.J.; Snieder, H.; Biino, G.; Schmidt, R.; Schmidt, H.; Chen, Y.E.; Bandinelli, S.; Dedoussis, G.; Thanaraj, T.A.; Kardia, S.L.R.; Kato, N.; Schulze, M.B.; Girotto, G.; Jung, B.; Böger, C.A.; Joshi, P.K.; Bennett, D.A.; de Jager, P.L.; Lu, X.; Mamakou, V.; Brown, M.; Caulfield, M.J.; Munroe, P.B.; Guo, X.; Ciullo, M.; Jonas, J.B.; Samani, N.J.; Kaprio, J.; Pajukanta, P.; Adair, L.S.; Bechayda, S.A.; de Silva, H.J.; Wickremasinghe, A.R.; Krauss, R.M.; Wu, J.Y.; Zheng, W.; den Hollander, A.I.; Bharadwaj, D.; Correa, A.; Wilson, J.G.; Lind, L.; Heng, C.K.; Nelson, A.E.; Golightly, Y.M.; Wilson, J.F.; Penninx, B.; Kim, H.L.; Attia, J.; Scott, R.J.; Rao, D.C.; Arnett, D.K.; Walker, M.; Koistinen, H.A.; Chandak, G.R.; Yajnik, C.S.; Mercader, J.M.; Tusié-Luna, T.; Aguilar-Salinas, C.A.; Villalpando, C.G.; Orozco, L.; Fornage, M.; Tai, E.S.; van Dam, R.M.; Lehtimäki, T.; Chaturvedi, N.; Yokota, M.; Liu, J.; Reilly, D.F.; McKnight, A.J.; Kee, F.; Jöckel, K.H.; McCarthy, M.I.; Palmer, C.N.A.; Vitart, V.; Hayward, C.; Simonsick, E.; van Duijn, C.M.; Lu, F.; Qu, J.; Hishigaki, H.; Lin, X.; März, W.; Parra, E.J.; Cruz, M.; Gudnason, V.; Tardif, J.C.; Lettre, G.; 't Hart, L.M.; Elders, P.J.M.; Damrauer, S.M.; Kumari, M.; Kivimaki, M.; van der Harst, P.; Spector, T.D.; Loos, R.J.F.; Province, M.A.; Psaty, B.M.; Brandslund, I.; Pramstaller, P.P.; Christensen, K.; Ripatti, S.; Widén, E.; Hakonarson, H.; Grant, S.F.A.; Kiemeney, L.A.L.M.; de Graaf, J.; Loeffler, M.; Kronenberg, F.; Gu, D.; Erdmann, J.; Schunkert, H.; Franks, P.W.; Linneberg, A.; Jukema, J.W.; Khera, A.V.; Männikkö, M.; Jarvelin, M.R.; Kutalik, Z.; Cucca, F.; Mook-Kanamori, D.O.; van Dijk, K.W.; Watkins, H.; Strachan, D.P.; Grarup, N.; Sever, P.; Poulter, N.; Rotter, J.I.; Dantoft, T.M.; Karpe, F.; Neville, M.J.; Timpson, N.J.; Cheng, C.Y.; Wong, T.Y.; Khor, C.C.; Sabanayagam, C.; Peters, A.; Gieger, C.; Hattersley, A.T.; Pedersen, N.L.; Magnusson, P.K.E.; Boomsma, D.I.; de Geus, E.J.C.; Cupples, L.A.; van Meurs, J.BJ.; Ghanbari, M.; Gordon-Larsen, P.; Huang, W.; Kim, Y.T.; Tabara, Y.; Wareham, N.J.; Langenberg, C.; Zeggini, E.; Kuusisto, J.; Laakso, M.; Ingelsson, E.; Abecasis, G.; Chambers, J.C.; Kooner, J.S.; de Vries, P.S.; Morrison, A.C.; North, K.E.; Daviglus, M.; Kraft, P.; Martin, N.G.; Whitfield, J.B.; Abbas, S.; Saleheen, D.; Walters, R.G.; Holmes, M.V.; Black, C.; Smith, B.H.; Justice, A.E.; Baras, A.; Buring, J.E.; Ridker, P.M.; Chasman, D.I.; Kooperberg, C.; Wei, W.Q.; Jarvik, G.P; Namjou, B.; Hayes, M.G.; Ritchie, M.D.; Jousilahti, P.; Salomaa, V.; Hveem, K.; Åsvold, B.O.; Kubo, M.; Kamatani, Y.; Okada, Y.; Murakami, Y.; Thorsteinsdottir, U.; Stefansson, K.; Ho, Y.L.; Lynch, J.A.; Rader, D.J.; Tsao, P.S.; Chang, K.M.; Cho, K.; O'Donnell, C.J.; Gaziano, J.M.; Wilson, P.; Rotimi, C.N.; Hazelhurst, S.; Ramsay, M.; Trembath, R.C.; van Heel, D.A.; Tamiya, G.; Yamamoto, M.; Kim, B.J.; Mohlke, K.L.; Frayling, T.M.; Hirschhorn, J.N.; Kathiresan, S.; Boehnke, M.; Natarajan, P.; Peloso, G.M.; Brown, C.D.; Morris, A.P.; Assimes, T.L.; Deloukas, P.; Sun, Y.V.; Willer, C.J.; VA Million Veteran Program; Global Lipids Genetics ConsortiumIncreased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.Item RNA N6-Methyladenosine (m6A) Methyltransferase-like 3 Facilitates Tumorigenesis and Cisplatin Resistance of Arecoline-Exposed Oral Carcinoma(Cells, 2022) Wang, C.; Kadigamuwa, C.; Wu, S.; Gao, Y.; Chen, W.; Gu, Y.; Wang, S.; Li, X.Background: Arecoline is known as the main active carcinogen found in areca nut extract that drives the pathological progression of oral squamous cell carcinoma (OSCC). Studies have revealed that dysregulation of RNA N6-methyladenosine (m6A) methyltransferase components is intimately linked to cancer initiation and progression, including oral cancer. Methods: The arecoline-induced dysregulated methyltransferase-like 3 (METTL3) gene was identified using RNA-seq transcriptome assay. Using in vitro and in vivo models, the biological roles of METTL3 in arecoline-transformed oral cancer were examined. Results: We found that METTL3 was markedly elevated in arecoline-exposed OSCC cell lines and OSCC tissues of areca nut chewers. We identified that hypoxia-inducible factor 1-alpha (HIF-1↵) stimulated METTL3 expression at the transcriptional level and further proved that METTL3-MYC-HIF-1↵ formed a positive autoregulation loop in arecolinetransformed OSCC cells. Subsequently, we manifested that METTL3 depletion profoundly reduced cell proliferation, cell migration, oncogenicity, and cisplatin resistance of arecoline-exposed OSCC cells. Conclusions: Developing novel strategies to target METTL3 may be a potential way to treat OSCC patients, particularly those with areca nut chewing history and receiving cisplatin treatment.Item A saturated map of common genetic variants associated with human height(Nature Publishing Group, 2022) Vedantam, S.; Marouli, E.; Sidorenko, J.; Bartell, E.; Sakaue, S.; Graff, M.; Eliasen, A.U.; Jiang, Y.; Raghavan, S.; Miao, J.; Arias, J.D.; Graham, S.E.; Mukamel, R.E.; Spracklen, C.N.; Yin, X.; Chen, S.H.; Ferreira, T.; Highland, H.H.; Ji, Y.; Karaderi. T,; Lin, K.; Lüll, K.; Malden, D.E.; Medina-Gomez, C.; Machado, M.; Moore, A.; Rüeger, S.; Sim. X,; Vrieze, S.; Ahluwalia, T.S.; Akiyama, M.; Allison, M.A.; Alvarez, M.; Andersen, M.K.; Ani, A.; Appadurai, V.; Arbeeva, L.; Bhaskar, S.; Bielak, L.F.; Bollepalli, S.; Bonnycastle, L.L.; Bork-Jensen, J.; Bradfield, J.P.; Bradford, Y.; Braund, P.S.; Brody, J.A.; Burgdorf, K.S.; Cade, B.E.; Cai, H.; Cai, Q.; Campbell, A.; Cañadas-Garre, M.; Catamo, E.; Chai, J.F.; Chai, X.; Chang, L.C.; Chen, C.H.; Chesi, A.; Choi, S.H.; Chung, R.H.; Cocca, M.; Concas, M.P.; Couture, C.; Cuellar-Partida, G.; Danning, R.; Daw, E.W.; Degenhard, F.; Delgado, G.E.; Delitala, A.; Demirkan, A.; Deng, X.; Devineni, P.; Dietl, A.; Dimitriou, M.; Dimitrov, L.; Dorajoo, R.; Ekici, A.B.; Engmann, J.E.; Fairhurst-Hunter, Z.; Farmaki, A.E.; Faul, J.D.; Fernandez-Lopez, J.C.; Forer, L.; Francescatto, M.; Freitag-Wolf, S.; Fuchsberger, C.; Galesloot, T.E.; Gao, Y.; Gao, Z.; Geller, F.; Giannakopoulou, O.; Giulianini,F.; Gjesing, A.P.; Goel, A.; Gordon, S.D.; Gorski, M.; Grove, J.; Guo, X.; Gustafsson, S.; Haessler, J.; Hansen, T.F.; Havulinna, A.S.; Haworth, S.J.; He, J.; Heard-Costa, N.; Hebbar, P.; Hindy, G.; Ho, Y.A.; Hofer, E.; Holliday, E.; Horn, K.; Hornsby, W.E.; Hottenga, J.J.; Huang, H.; Huang, J.; Huerta-Chagoya, A.; Huffman, J.E.; Hung, Y.J.; Huo, S.; Hwang, M.Y.; Ha, H.; Ikeda, D.D.; Isono, M.; Jackson, A.U.; Jäger, S.; Jansen, I.E.; Johansson, I.; Jonas, J.B.; Jonsson, A.; Jørgensen, T.; Kalafati, I.P.; Kanai, M.; Kanoni, S.; Kårhus, L.L.; Kasturiratne, A.; Katsuya, T.; Kawaguchi, T.; Kember, R.L.; Kentistou, K.A.; Kim, H.N.; Kim, Y.J.; Kleber, M.E.; Knol, M.J.; Kurbasic, A.; Lauzon, M.; Le, P.; Lea, R.; Lee, J.Y.; Leonard, H.L.; Li, S.A.; Li, X.; Li, X.; Liang, J.; Lin, H.; Lin, S.Y.; Liu, J.; Liu, X.; Lo, K.S.; Long, J.; Lores-Motta, L.; Luan, J.; Lyssenko, V.; Lyytikäinen, L.P.; Mahajan, A.; Mamakou, V.; Mangino, M.; Manichaikul, A.; Marten, J.,; Mattheisen, M.; Mavarani, L.; McDaid, A.F.; Meidtner, K.; Melendez, T.L.; Mercader, J.M.; Milaneschi, Y.; Miller, J.E.; Millwood, I.Y.; Mishra, P.P.; Mitchell, R.E.; Møllehave, L.T.; Morgan, A.; Mucha, S.; Munz, M.; Nakatochi, M.; Nelson, C.P.; Nethander, M.; Nho, C.W.; Nielsen, A.A.; Nolte, I.M.; Nongmaithem, S.S.; Noordam, R.; Ntalla, I.; Nutile, T.; Pandit, A.; Christofidou, P.; Pärna, K.; Pauper, M.; Petersen, E.R.B.; Petersen, L.V.; Pitkänen, N.; Polašek, O.; Poveda, A.; Preuss, M.H.; Pyarajan, S.; Raffield, L.M.; Rakugi, H.; Ramirez, J.; Rasheed, A.; Raven, D.; Rayner, N.W.; Riveros, C.; Rohde, R.; Ruggiero, D.; Ruotsalainen, S.E.; Ryan, K.A.; Sabater-Lleal, M.; Saxena, R.; Scholz, M.; Sendamarai, A.; Shen, B.; Shi, J.; Shin, J.H.; Sidore, C.; Sitlani, C.M.; Slieker, R.C.; Smit, R.A.J.; Smith, A.V.; Smith, J.A.; Smyth, L.J.; Southam, L.; Steinthorsdottir, V.; Sun, L.; Takeuchi, F.; Tallapragada, D.S.P.; Taylor, K.D.; Tayo, B.O.; Tcheandjieu, C.; Terzikhan, N.; Tesolin, P.; Teumer, A.; Theusch, E.; Thompson, D.J.; Thorleifsson, G.; Timmers, P.R.H.J.; Trompet, S.; Turman, C.; Vaccargiu, S.; van der Laan, S.W.; van der Most, P.J.; van Klinken, J.B.; van Setten, J.; Verma, S.S.; Verweij, N.; Veturi, Y.; Wang, C.A.; Wang, C.; Wang, L.; Wang, Z.; Warren, H.R.; Bin Wei, W.; Wickremasinghe, A.R.; Wielscher, M.; Wiggins, K.L.; Winsvold, B.S.; Wong, A.; Wu, Y.; Wuttke, M.; Xia, R.; Xie, T.; Yamamoto, K.; Yang, J.; Yao, J.; Young, H.; Yousri, N.A.; Yu, L.; Zeng, L.; Zhang, W.; Zhang, X.; Zhao, J.H.; Zhao. W.; Zhou, W.; Zimmermann, M.E.; Zoledziewska, M.; Adair, L.S.; Adams, H.H.H.; Aguilar-Salinas, C.A.; Al-Mulla, F.; Arnett, D.K.; Arnett, D.K.; Asselbergs, F.W.; Åsvold, B.O.; Attia, J.; Banas, B.; Bandinelli, S.; Bennett D.A.; Bergler, T.; Bharadwaj, D.; Biino, G.; Bisgaard, H.; Boerwinkle, E.; Böger, C.A.; Bønnelykke, K.; Boomsma, D.I.; Børglum, A.D.; Borja, J.B.; Bouchard, C.; Bowden, D.W.; Brandslund, I.; Brumpton, B.; Buring, J.E.; Caulfield, M.J.; Chambers, J.C.; Chandak, G.R.; Chanock, S.J.; Chaturvedi, N.; Chen, Y.I.; Chen, Z.; Cheng, C.Y.; Christophersen, I.E.; Ciullo, M.; Cole, J.W.; Collins, F.S.; Cooper, R.S.; Cruz, M.; Cucca, F.; Cupples, L.A.; Cutler, M.J.; Damrauer, S.M.; Dantoft, T.M.; de Borst, G.J.; de Groot, L.C.P.G.M.; de Jager, P.L.; de Kleijn, D.P.V.; de Silva, H.J.; Dedoussis, G.V.; den Hollander, A.I.; Du, S.; Easton, D.F.; Elders, P.J.M.; Eliassen, A.H.; Ellinor, P.T.; Elmståhl, S.; Erdmann, J.; Evans, M.K.; Fatkin, D.; Feenstra, B.; Feitosa, M.F.; Ferrucci, L.; Ford, I.; Fornage, M.; Franke, A.; Franks, P.W.; Freedman, B.I.; Gasparini, P.; Gieger, C.; Girotto, G.; Goddard, M.E.; Golightly, Y.M.; Gonzalez-Villalpando. C.; Gordon-Larsen, P.; Grallert, H.; Grant, S.F.A.; Grarup, N.; Griffiths, L.; Gudnason, V.; Haiman, C.; Hakonarson, H.; Hansen, T.; Hartman, C.A.; Hattersley, A.T.; Hayward, C.; Heckbert, S.R.; Heng, C.K.; Hengstenberg, C.; Hewitt, A.W.; Hishigaki, H.; Hoyng, C.B.; Huang, P.L.; Huang, W.; Hunt, S.C.; Hveem, K.; Hyppönen, E.; Iacono, W.G.; Ichihara, S.; Ikram, M.A.; Isasi, C.R.; Jackson, R.D.; Jarvelin, M.R.; Jin, Z.B.; Jöckel, K.H.; Joshi, P.K.; Jousilahti, P.; Jukema, J.W.; Kähönen, M.; Kamatani, Y.; Kang, K.D.; Kaprio, J.; Kardia, S.L.R.; Karpe, F.; Kato, N.; Kee, F.; Kessler, T.; Khera, A.V.; Khor, C.C.; Kiemeney, L.A.L.M.; Kim, B.J.; Kim, E.K.; Kim, H.L.; Kirchhof, P.; Kivimaki, M.; Koh, W.P.; Koistinen, H.A.; Kolovou, G.D.; Kooner, J.S.; Kooperberg, C.; Köttgen, A.; Kovacs, P.; Kraaijeveld, A.; Kraft, P.; Krauss, R.M.; Kumari, M.; Kutalik, Z.; Laakso, M.; Lange, L.A.; Langenberg, C.; Launer, L.J.; Le Marchand, L.; Lee, H.; Lee, N.R.; Lehtimäki, T.; Li, H.; Li, L.; Lieb, W.; Lin, X.; Lind, L.; Linneberg, A.; Liu, C.T.; Liu, J.; Loeffler, M.; London, B.; Lubitz, S.A.; Lye, S.J.; Mackey, D.A.; Mägi, R.; Magnusson, P.K.E.; Marcus, G.M.; Vidal, P.M.; Martin, N.G.; Martin, N.G.; Lieb, W.; Lin, X.; Lind, L.; Linneberg, A.; Liu, C.T.; Liu, J.; Loeffler, M.; London, B.; Lubitz, S.A.; Lye, S.J.; Mackey, D.A.; Mägi, R.; Mägi, R.; Magnusson, P.K.E.; Marcus, G.M.; Vidal, P.M.; Martin, N.G.; März, W.; Matsuda, F.; McGarrah, R.W.; McGue, M.; McKnight, A.J.; Medland, S.E.; Mellström, D.; Metspalu, A.; Mitchell, B.D.; Mitchell, P.; Mook-Kanamori, D.O.; Morris, A.D.; Mucci, L.A.; Munroe, P.B.; Nalls, M.A.; Nazarian, S.; Nelson, A.E.; Neville, M.J.; Newton-Cheh, C.; Nielsen, C.S.; Nöthen, M.M.; Ohlsson, C.; Oldehinkel, A.J.; Oldehinkel, A.J.; Orozco, L.; Pahkala, K.; Pajukanta, P.; Palmer, C.N.A.; Parra, E.J.; Pattaro, C.; Pedersen, O.; Pennell, C.E.; Penninx, B.W.J.H.; Perusse, L.; Peters, A.; Peyser, P.A.; Porteous, D.J.; Posthuma, D.; Power, C.; Pramstaller, P.P.; Province, M.A.; Qi, Q.; Qu, J.; Rader, D.J.; Raitakari, O.T.; Ralhan, S.; Rallidis, L.S.; Rao, D.C.; Redline, S.; Reilly, D.F.; Reiner, A.P.; Rhee, S.Y.; Ridker, P.M.; Rienstra, M.; Ripatti, S.; Ritchie, M.D.; Roden, D.M.; Rosendaal, F.R.; Rotter, J.I.; Rudan, I.; Rutters, F.; Sabanayagam, C.; Saleheen, D.; Salomaa, V.; Samani, N.J.; Sanghera, D.K.; Sattar, N.; Schmidt, B.; Schmidt, H.; Schmidt, R.; Schulze, M.B.; Schunkert, H.; Scott, L.J.; Scott, R.J.; Sever, P.; Shiroma, E.J.; Shoemaker, M.B.; Shu, X.O.; Simonsick, E.M.; Sims, M.; Singh, J.R.; Singleton, A.B.; Sinner, M.F.; Smith, J.G.; Snieder, H.; Spector, T.D.; Stampfer, M.J.; Stark, K.J.; Strachan, D.P.; 't Hart, L.M.; Tabara, Y.; Tang, H.; Tardif, J.C.; Thanaraj, T.A.; Timpson, N.J.; Tönjes, A.; Tremblay, A.; Tuomi, T.; Tuomilehto, J.; Tusié-Luna, M.T.; Uitterlinden, A.G.; van Dam, R.M.; van der Harst, P.; Van der Velde, N.; van Duijn, C.M.; van Schoor, N.M.; Vitart, V.; Völker, U.; Vollenweider, P.; Völzke, H.; Wacher-Rodarte, N.H.; Walker, M.; Wang, Y.X.; Wareham, N.J.; Watanabe, R.M.; Watkins, H.; Weir, D.R.; Werge, T.M.; Widen, E.; Wilkens, L.R.; Willemsen, G.; Willett, W.C.; Wilson, J.F.; Wong, T.Y.; Woo, J.T.; Wright, A.F.; Wu, J.Y.; Xu, H.; Yajnik, C.S.; Yokota, M.; Yuan, J.M.; Zeggini, E.; Zemel, B.S.; Zheng, W.; Zhu, X.; Zmuda, J.M.; Zonderman, A.B.; Zwart, J.A.; 23andMe Research Team; VA Million Veteran Program.; DiscovEHR (DiscovEHR and MyCode Community Health Initiative).; eMERGE (Electronic Medical Records and Genomics Network).; Lifelines Cohort Study.; PRACTICAL Consortium.; Understanding Society Scientific Group.; Chasman, D.I.; Cho, Y.S.; Heid, I.M.; McCarthy, M.I.; Ng, M.C.Y.; O'Donnell, C.J.; Rivadeneira, F.; Thorsteinsdottir, U.; Sun, Y.V.; Tai, E.S.; Boehnke, M.; Deloukas, P.; Justice, A.E.; Lindgren, C.M.; Loos, R.J.F.; Mohlke, K.L.; North, K.E.; Stefansson, K.; Walters R.G.v.; Winkler, T.W.; Young, K.L.; Loh, P.R.; Yang, J.; Esko, T.; Assimes, T.L.; Auton, A.; Abecasis, G.R.; Willer, C.J.; Locke, A.E.; Berndt, S.I.; Lettre, G.; Frayling, T.M.; Frayling, T.M.; Okada, Y.; Wood, A.R.; Visscher, P.M.; Hirschhorn, J.N.Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.Item The third intensive care bundle with blood pressure reduction in acute cerebral haemorrhage trial (INTERACT3): an international, stepped wedge cluster randomised controlled trial(Elsevier, 2023) Ma, L.; Hu, X.; Song, L.; Chen, X.; Ouyang, M.; Billot, L.; Li, Q.; Malavera, A.; Li, X.; Muñoz-Venturelli, P.; de Silva, A.; Thang, N.H.; Wahab, K.W.; Pandian, J.D.; Wasay, M.; Pontes-Neto, O.M.; Abanto, C.; Arauz, A.; Shi, H.; Tang, G.; Zhu, S.; She, X.; Liu, L.; Sakamoto, Y.; You, S.; Han, Q.; Crutzen, B.; Cheung, E.; Li, Y.; Wang, X.; Chen, C.; Liu, F.; Zhao, Y.; Li, H.; Liu, Y.; Jiang, Y.; Chen, L.; Wu, B.; Liu, M.; Xu, J.; You, C.; Anderson, C.S.; INTERACT3 InvestigatorsBACKGROUND: Early control of elevated blood pressure is the most promising treatment for acute intracerebral haemorrhage. We aimed to establish whether implementing a goal-directed care bundle incorporating protocols for early intensive blood pressure lowering and management algorithms for hyperglycaemia, pyrexia, and abnormal anticoagulation, implemented in a hospital setting, could improve outcomes for patients with acute spontaneous intracerebral haemorrhage. METHODS: We performed a pragmatic, international, multicentre, blinded endpoint, stepped wedge cluster randomised controlled trial at hospitals in nine low-income and middle-income countries (Brazil, China, India, Mexico, Nigeria, Pakistan, Peru, Sri Lanka, and Viet Nam) and one high-income country (Chile). Hospitals were eligible if they had no or inconsistent relevant, disease-specific protocols, and were willing to implement the care bundle to consecutive patients (aged ≥18 years) with imaging-confirmed spontaneous intracerebral haemorrhage presenting within 6 h of the onset of symptoms, had a local champion, and could provide the required study data. Hospitals were centrally randomly allocated using permuted blocks to three sequences of implementation, stratified by country and the projected number of patients to be recruited over the 12 months of the study period. These sequences had four periods that dictated the order in which the hospitals were to switch from the control usual care procedure to the intervention implementation of the care bundle procedure to different clusters of patients in a stepped manner. To avoid contamination, details of the intervention, sequence, and allocation periods were concealed from sites until they had completed the usual care control periods. The care bundle protocol included the early intensive lowering of systolic blood pressure (target <140 mm Hg), strict glucose control (target 6·1-7·8 mmol/L in those without diabetes and 7·8-10·0 mmol/L in those with diabetes), antipyrexia treatment (target body temperature ≤37·5°C), and rapid reversal of warfarin-related anticoagulation (target international normalised ratio <1·5) within 1 h of treatment, in patients where these variables were abnormal. Analyses were performed according to a modified intention-to-treat population with available outcome data (ie, excluding sites that withdrew during the study). The primary outcome was functional recovery, measured with the modified Rankin scale (mRS; range 0 [no symptoms] to 6 [death]) at 6 months by masked research staff, analysed using proportional ordinal logistic regression to assess the distribution in scores on the mRS, with adjustments for cluster (hospital site), group assignment of cluster per period, and time (6-month periods from Dec 12, 2017). This trial is registered at Clinicaltrials.gov (NCT03209258) and the Chinese Clinical Trial Registry (ChiCTR-IOC-17011787) and is completed. FINDINGS: Between May 27, 2017, and July 8, 2021, 206 hospitals were assessed for eligibility, of which 144 hospitals in ten countries agreed to join and were randomly assigned in the trial, but 22 hospitals withdrew before starting to enrol patients and another hospital was withdrawn and their data on enrolled patients was deleted because regulatory approval was not obtained. Between Dec 12, 2017, and Dec 31, 2021, 10 857 patients were screened but 3821 were excluded. Overall, the modified intention-to-treat population included 7036 patients enrolled at 121 hospitals, with 3221 assigned to the care bundle group and 3815 to the usual care group, with primary outcome data available in 2892 patients in the care bundle group and 3363 patients in the usual care group. The likelihood of a poor functional outcome was lower in the care bundle group (common odds ratio 0·86; 95% CI 0·76-0·97; p=0·015). The favourable shift in mRS scores in the care bundle group was generally consistent across a range of sensitivity analyses that included additional adjustments for country and patient variables (0·84; 0·73-0·97; p=0·017), and with different approaches to the use of multiple imputations for missing data. Patients in the care bundle group had fewer serious adverse events than those in the usual care group (16·0% vs 20·1%; p=0·0098). INTERPRETATION: Implementation of a care bundle protocol for intensive blood pressure lowering and other management algorithms for physiological control within several hours of the onset of symptoms resulted in improved functional outcome for patients with acute intracerebral haemorrhage. Hospitals should incorporate this approach into clinical practice as part of active management for this serious condition. FUNDING: Joint Global Health Trials scheme from the Department of Health and Social Care, the Foreign, Commonwealth & Development Office, and the Medical Research Council and Wellcome Trust; West China Hospital; the National Health and Medical Research Council of Australia; Sichuan Credit Pharmaceutic and Takeda China.