Browsing by Author "Newton, A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Evaluation of marine subareas of Europe using life history parameters and trophic levels of selected fish populations(Journal of Marine Environmental Research, 2015) Jayasinghe, R.P.P.K.; Amarasinghe, U.S.; Newton, A.European marine waters include four regional seas that provide valuable ecosystem services to humans, including fish and other seafood. However, these marine environments are threatened by pressures from multiple anthropogenic activities and climate change. The European Marine Strategy Framework Directive (MSFD) was adopted in 2008 to achieve good environmental status (GEnS) in European Seas by year 2020, using an Ecosystem Approach. GEnS is to be assessed using 11 descriptors and up to 56 indicators. In the present analysis two descriptors namely “commercially exploited fish and shellfish populations” and “food webs” were used to evaluate the status of subareas of FAO 27 area. Data on life history parameters, trophic levels and fisheries related data of cod, haddock, saithe, herring, plaice, whiting, hake and sprat were obtained from the FishBase online database and advisory reports of International Council for the Exploration of the Sea (ICES). Subareas inhabited by r and K strategists were identified using interrelationships of life history parameters of commercially important fish stocks. Mean trophic level (MTL) of fish community each subarea was calculated and subareas with species of high and low trophic level were identified. The Fish in Balance (FiB) index was computed for each subarea and recent trends of FiB indices were analysed. The overall environmental status of each subarea was evaluated considering life history trends, MTL and FiB Index. The analysis showed that subareas I, II, V, VIII and IX were assessed as “good” whereas subareas III, IV, VI and VII were assessed as “poor”. The subareas assessed as “good” were subject to lower environmental pressures, (less fishing pressure, less eutrophication and more water circulation), while the areas with “poor” environment experienced excessive fishing pressure, eutrophication and disturbed seabed. The evaluation was based on two qualitative descriptors (“commercially exploited fish and shellfish populations” and “food webs”) is therefore more robust.Item Evaluation of status of commercial fish stocks in European marine subareas using mean trophic levels of fish landings and spawning stock biomass(Ocean and Coastal Management, 2016) Jayasinghe, R.P.P.K.; Amarasinghe, U.S.; Newton, A.Most of the fish stocks in the world, including European fish stocks, are threatened by overfishing and/or degraded environmental conditions. Although the Common Fisheries Policy (CFP) is the main policy instrument managing fish stocks in Europe, there is continued concern as to whether commercial fish stocks will achieve Good Environmental Status (GEnS) in 2020 in accordance with the Marine Strategy Framework Directive (MSFD). In this context, the evaluation of the status of fish stocks in the subareas of FAO fishing area 27 was carried out using mean trophic levels (MTL) in fish landings and spawning stock biomass (SSB). Comparisons were made before and after 2008 to establish whether the trend is positive or negative. The main data sources for landings and SSB were the International Council for the Exploration of the Sea (ICES) advisory reports. MTLs in landing and SSB were determined for each subarea and the subareas were categorized into four groups, according to MTLs after 2008. The first group (subareas I + II, V) had higher MTL in landings and higher MTL in SSB after 2008. Therefore, fisheries in these subareas appear sustainable. The second group was subareas VIII + IX, for which the fish stocks have higher MTL in landings but low MTL in SSB, indicating that SSB was being overfished. The third was subarea (VI), where fish stocks have lower MTL in landings than those in SSB after 2008, which may indicate that fish stocks are recovering. Fish stocks in the fourth group (subareas III, IV and VII) had low MTL in landings and the MTL in SSB was lower than that of landings before 2008. This may be due to heavy fishing. In addition, we estimated the harvest rate (HR) of the fish stocks before and after 2008. The results showed that most of the fish stocks have lower HR after 2008, indicating that the status has improved, perhaps due to improvements in the implementation of CFP. However, some fish stocks showed high HR even after 2008, so that new management options are still needed. Other factors such as eutrophication, seafloor disturbances, marine pollution, invasive species etc., influence SSB ecosystem health options and should also be incorporated in the management criteria. Most of these environmental pressures are of high priority in the MSFD, and therefore the findings of this study will be useful for both CFP and MSFD.