Browsing by Author "Reddy, K.R."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Non-alcoholic fatty liver disease: Not time for an obituary just yet!(Munksgaard International Publishers, 2020) Singh, S.P.; Anirvan, P.; Reddy, K.R.; Conjeevaram, H.S.; Marchesini, G.; Rinella, M.E.; Madan, K.; Petroni, M.L.; Al-Mahtab, M.; Caldwell, S.H.; Aithal, G.P.; Hamid, S.S.; Farrell, G.C.; Satapathy, S.K.; Duseja, A.; Acharya, S.K.; Dassanayake, A.S.; Goh, K.L.No abstract availableItem Palette of lipophilic bioconjugatable bacteriochlorins for construction of biohybrid light-harvesting architectures(Chemical Science, 2013) Reddy, K.R.; Pandithavidana, D.R.; Parkes-Loach, P.S.; Loach, P.A.; Bocian, D.F.; Holten, D.; Lindsey, J.S.The challenge of creating both pigment building blocks and scaffolding to organize a large number of such pigments has long constituted a central impediment to the construction of artificial light-harvesting architectures. Light-harvesting (LH) antennas in photosynthetic bacteria are formed in a two-tiered self-assembly process wherein (1) a peptide dyad containing two bacteriochlorophyll a molecules forms, and (2) the dyads associate to form cyclic oligomers composed of 8 or 9 dyads in LH2 and 15 or 16 in LH1 of purple photosynthetic bacteria. While such antenna systems generally have near-quantitative transfer of excitation energy among pigments, only a fraction of the solar spectrum is typically absorbed. A platform architecture for study of light-harvesting phenomena has been developed that employs native photosynthetic peptide analogs, native bacteriochlorophyll a, and synthetic near-infrared-absorbing bacteriochlorins. Herein, the syntheses of 10 lipophilic bacteriochlorins are reported, of which 7 contain bioconjugatable handles (maleimide, iodoacetamide, formyl, carboxylic acid) for attachment to the peptide chassis. The bioconjugatable bacteriochlorins typically exhibit a long-wavelength absorption band in the range 710 to 820 nm, fluorescence yield of 0.1?0.2, and lifetime of the lowest singlet excited state of 2?5 ns. The ?-helical structure of the native-like peptide is retained upon conjugation with a synthetic bacteriochlorin, as judged by single-reflection infrared studies. Static and time-resolved optical studies of the oligomeric biohybrid architectures in aqueous detergent solution reveal efficient ([similar]90%) excitation energy transfer from the attached bacteriochlorin to the native-like bacteriochlorophyll a sites. The biohybrid light-harvesting architectures thus exploit the self-constituting features of the natural systems yet enable versatile incorporation of members from a palette of synthetic chromophores, thereby opening the door to a wide variety of studies in artificial photosynthesis.