Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shrestha, Ashok K."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Detection of Zn2+ ions using a high-affinity low-molecular-weight fluorescence probe in two freshwater organisms
    (Korean Society of Environmental Risk Assessment and Health Science, 2023) Shrestha, Ashok K.; Samarakoon, Thilomi; Fujino, Takeshi; Hagimori, Masayori
    Objective The objective of this study was to determine the uptake and distribution of zinc ions (Zn2+) in two freshwater organisms, Moina macrocopa and Rheocricotopus larvae using a high-affinity low-molecular-weight Zn2+-ion-selective fluorescence probe. Methods M. macrocopa and Rheocricotopus larvae were exposed separately to dissolved Zn2+ (0.1 and 1 mg/L) for 12, 24, and 48 h in three replicates along with a control. Later, the organisms were incubated with the fluorescence probe in six-well plates in the dark at room temperature. At the end of the incubation period, the organisms were washed with a phosphate buffer solution (0.01 M). The live organisms were then imaged using a fluorescence microscope and the fluorescence inten- sities of the images were determined. Results The results revealed that the Zn2+ ions are uptaken and internalized into the bodies of the organisms exposed to Zn2+ ion concentrations, as indicated by a significant increase in the fluorescence intensities of the fluorescence images of the organisms. According to the fluorescence images, the Zn2+ ions were mainly localized in the lower gut region of M. macrocopa at the end of 48 h. However, in Rheocricotopus larvae, the Zn2+ ions were detected in the midgut region of the digestory tube after 48 h of exposure. Therefore, this was dependent upon both the Zn2+ concentration in the exposure media and the exposure duration. Conclusion Taken together, the distribution of Zn2+ ions in different aquatic species is species-specific. Furthermore, the present study provides insight into the potential use of high-affinity low-molecular-weight Zn2+-ion-selective fluorescence probes to detect labile Zn2+ in aquatic organisms and the toxicological implications of zinc pollution in aquatic environments.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify