Browsing by Author "Siripala, W. P."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Photocurrent improvement in grape dye sensitized solar cells by in cooperation of electrodeposited Cu particles in TiO2 photoanode(Faculty of Science, University of Kelaniya Sri Lanka, 2023) Shakya, M. D. P. A.; Jayathilaka, K. M. D. C.; Wanninayake, W. T. M. P. K.; Kumara, R.; Siripala, W. P.; Wijesundera, R. P.A worldwide effort is currently underway to address the world's energy crisis by finding sustainable energy alternatives. The Dye-Sensitized Solar Cell (DSSC) is a type of solar cell device that functions based on electrochemical principles and uses light sensitive dyes within its TiO2 photoelectrode layer to absorb light. The DSSC, one of the potential solutions, appears to be the most viable option for a future renewable energy source due to its sustainability and environmental friendliness. In cooperation of metal particles like Au or Ag in nano scale to the photoanode is one of the promising methods to improve the efficiencies of these DSSCs. Among these metal particles Cu has some distinct properties such as abundance, low toxicity, low cost and it undergoes Localized Surface Plasmonic Resonance (LSPR) effect like Au nanoparticles. Therefore, to improve the DSSC performances, in this study, Cu particle incorporation to the TiO2 electrode was carried out by electrochemical deposition method. Homogeneous TiO2 paste prepared by mixing appropriate amount of TiO2 powder (Titanium (IV) dioxide), ethanol, and acetic acid was deposited on a transparent Indium-doped Tin Oxide (ITO) conductive glass substrate by doctor blading method. Electrodeposition of Cu particles were potentiaostatically grown in the TiO2 electrode at -700 mV vs Ag/AgCl reference electrode using a three electrode electrochemical cell configuration with Pt as the counter electrode and 0.1 M sodium acetate and 0.01 M cupric acetate electrolyte at room temperature. Natural dye grapes have been used as sensitizer in the study. DSSCs were fabricated by sandwiching above TiO2 films with a C coated counted electrode using KI/I2 based electrolyte. The devices were characterized by analysing the UV – vis absorbance spectra and current density-voltage (J-V) curves and controlled potential coulometry measurements. The UV – vis absorbance spectrum revealed that the light absorption of DSSCs enhanced due to the incorporation Cu. The power conversion efficiency of 0.10%, photocurrent density (JSC) of 501 μA/cm2, open circuit voltage (VOC) of 0.47 V, and fill factor (FF) of 42% were achieved after the Cu incorporation in the photoanode. It is found that due to the incorporation of Cu particles, a slight voltage drop was visible, but there was a significant increase in the photocurrent density (JSC) from 308 μA/cm2 to 501 μA/cm2. The efficiency also increased from 0.07 to 0.10%. DSSC with the incorporated Cu particles showed 62% enhancement in the photocurrent compared to the DSSC without Cu particles.Item Sulphur treated single step electrodeposited Cu2ZnSnS4(Faculty of Science, University of Kelaniya Sri Lanka, 2024) Hetti Arachchige, K. A.; Wijesundera, L. B. D. R. P.; Kumarage, W. G. C.; Jayathilaka, K. M. D. C.; Siripala, W. P.Solar cells, directly converting sunlight into electricity through the photovoltaic (PV) effect, is the best alternative for the global energy crisis. Among the various solar energy materials, Cu2ZnSnS4 (CZTS) is a promising material for solar cell applications due to its unique optoelectronic properties. This study studied the possibility of the growth of quaternary CZTS thin films using a single-step electrodeposition technique for applications in PV devices. CZTS thin films were potentiostatically electrodeposited at - 0.89 V vs Ag/AgCl for 4 minutes on Titanium (Ti) substrate in a three-electrode electrochemical cell containing, 0.02 M copper (II) sulphate pentahydrate (CuSO4.5H2O),0.01M zinc sulphate heptahydrate (ZnSO4 .7H2O), 0.02 M tin sulphate (SnSO4) and 0.02 M sodium thiosulphate (Na2S2O3) at room temperature. 0.2 M tri-sodium citrate (C6H5Na3O7:Na3 - citrate) was used as a complexing agent and tartaric acid (C4H6O6) was used as pH control solution. pH of the bath was maintained at 5. The counter and reference electrodes were Pt plate and Ag/AgCl respectively. Prior to the CZTS deposition, Ti substrates were initially polished with sandpaper and then cleaned with detergent, diluted HCl, and finally cleaned ultrasonically in distilled water for 15 min. Two sets of samples were prepared by annealing as grown CZTS thin films at 550 °C for 30 minutes in N2 and H2S atmospheres respectively. As grown, annealed in N2, and annealed in H2S, CZTS films were characterized and compared using dark and light Current-Voltage (I-V) and Capacitance-Voltage (Mott-Schottky) measurements in a photoelectrochemical cell (PEC) containing a 0.1 M sodium acetate aqueous electrolyte. Grown CZTS thin films did not show any photoactive properties. However, as revealed by the I-V characteristics, films annealed in N2 produced n-type photoconductivity having Voc of 204 mV and Jsc of 20 µAcm-2 in PEC while films annealing in H2S produced p-type photoconductivity having Voc of ~ 250 mV and Jsc of ~ 110 µAcm-2 in the same PEC. This finding was further studied using Mott-Schottky characteristics. Results revealed that films annealed in N2 and H2S attribute n-type and p-type photoconductivity respectively. Further, flat band potential (VFB) values of -0.066V and +0.594V vs Ag/AgCl in the same PEC exhibited for the films annealed in N2 and H2S respectively indicating the formation of a better interface between CZTS and electrolyte for the samples annealed in H2S. In conclusion, significant photoactive enhancement in single step electrodeposited CZTS can be achieved with H2S treatment.