Browsing by Author "Somarathne, M.B.C.L."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Development of siRNA mediated RNA interference and functional analysis of novel parasitic nematode-specific protein of Setaria digitata(Academic Press, 2018) Somarathne, M.B.C.L.; Gunawardene, Y.I.N.S.; Chandrasekharan, N.V.; Dassanayake, R.S.Despite the differences of the host, parasitic nematodes may share commonalities in their parasitizing genes. Setaria digitata novel protein (SDNP) is such an entity which is parasitic nematode-specific and having sequence similarities with those of W. bancrofti, B. malayi, Loa loa and Onchocerca volvulus. Post-transcriptional gene silencing by siRNA mediated RNA interference (RNAi) is a widely used technique in functional genomics. Though the technique has been used in several free-living, plant and animal parasitic nematodes, it has not yet been tried out for the filarial worm S. digitata. In this study, we developed an effective siRNA delivery method by microinjection and utilized the siRNAi tool to knockdown SDNP to study the phenotypic and cellular changes associated with the interference. qPCR analysis revealed, a significant reduction of SDNP transcript levels following siRNA microinjection into S. digitata adult worms. Similarly, immunohistochemical staining indicated a reduction of SDNP protein expression. Furthermore, worms treated with siRNA showed a significant reduction of microfilariae release together with embryonic lethality by arresting an early developmental stage compared to non-treated worms. A distinct motility reduction was also observed in treated worms compared to non-treated counterparts. This is the first report of the amenability of S. digitata to the siRNA induced RNAi. The presence of inter-domain linkers of muscle-specific twitchin kinase and calcium-dependent protein kinase isoform CDPK1 together with what our results revealed suggest that SDNP is most likely a protein involved in muscle movement and growth and development of the nematode. Hence SDNP has the characteristics of a potential drug target.Item Functional analysis of a novel parasitic nematode-specific protein of Setaria digitata larvae in Culex quinquefasciatus by siRNA mediated RNA interference(BioMed Central, 2018) Somarathne, M.B.C.L.; Gunawardene, Y.I.N.S.; Chandrasekharan, N.V.; Ellepola, A.N.B.; Dassanayake, R.S.BACKGROUND: Functional analysis of animal parasitic nematode genes is often quite challenging due to the unavailability of standardised in vitro culture conditions and lack of adequate tools to manipulate these genes. Therefore, this study was undertaken to investigate the suitability of Culex quinquefasciatus, as an in vivo culture platform for Setaria digitata larvae and RNA interference (RNAi), as a post-transcriptional gene silencing tool to study the roles of a vital gene that encodes a novel parasitic nematode-specific protein (SDNP). RESULTS: The red colour fluorescence detected following RNAi injection to the thorax of C. quinquefasciatus indicated the uptake of dsRNA by S. digitata larvae. The reduction of SDNP transcripts in siRNA treated larvae compared to non-treated larvae, as determined by qPCR, indicated that the siRNA pathway is operational in S. digitata larvae. The observation of motility reductions and deformities during the development indicated the association of SDNP in larvae locomotion and development processes, respectively. The irregularities in the migration of larvae in mosquitoes and elevated survival rates of mosquitoes compared to their untreated counterparts indicated reduced parasitism of S. digitata larvae in mosquitoes upon targeted downregulation of SDNP by siRNA treatment. CONCLUSION: SDNP plays vital roles in muscle contraction, locomotion, development processes, larval development and parasitism of S. digitata. Its ubiquitous presence in parasitic nematodes and its absence in their hosts provide a tantalising prospect of the possibility of targeting SDNP for future development of anthelmintic drugs. The susceptibility of the larval stages of S. digitata for RNAi in Culex quinquefasciatus was also demonstrated for the first time in this study.Item In-vitro uptake and localization of Cy3-labeled by Setaria digitata(Sri Lanka Association for the Advancement of Science, 2015) Somarathne, M.B.C.L.; Dassanayake, R.S.; Chandrasekaran, N.V.; Gunawardene, Y.I.N.S.