Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Thambugala, Kasun M."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Humans vs. Fungi: An Overview of Fungal Pathogens against Humans
    (2024) Thambugala, Kasun M.; Daranagama, Dinushani A.; Tennakoon, Danushka S.; Jayatunga, Dona Pamoda W.; Hongsanan, Sinang; Xie, Ning
    Human fungal diseases are infections caused by any fungus that invades human tissues, causing superficial, subcutaneous, or systemic diseases. Fungal infections that enter various human tissues and organs pose a significant threat to millions of individuals with weakened immune systems globally. Over recent decades, the reported cases of invasive fungal infections have increased substantially and research progress in this field has also been rapidly boosted. This review provides a comprehensive list of human fungal pathogens extracted from over 850 recent case reports, and a summary of the relevant disease conditions and their origins. Details of 281 human fungal pathogens belonging to 12 classes and 104 genera in the divisions ascomycota, basidiomycota, entomophthoromycota, and mucoromycota are listed. Among these, Aspergillus stands out as the genus with the greatest potential of infecting humans, comprising 16 species known to infect humans. Additionally, three other genera, Curvularia, Exophiala, and Trichophyton, are recognized as significant genera, each comprising 10 or more known human pathogenic species. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of human fungal pathogens was performed to show their phylogenetic relationships and clarify their taxonomies. In addition, this review summarizes the recent advancements in fungal disease diagnosis and therapeutics.
  • Thumbnail Image
    Item
    The mycoremediation potential of phyllosphere fungi in urban ornamental plants in Sri Lanka with mathematical models for PAH degradation
    (2024) Dharmasiri, Nadeema; Kannangara, Sagarika; Undugoda, Lanka; Munasinghe, Jayantha; Madushika, Ruvini; Thambugala, Kasun M.; Gunathunga, Chathuri; Pavalakumar, Dayani
    Currently, phylloremediation has emerged as a highly effective method for eliminating air pollutants, particularly polyaromatic hydrocarbons (PAHs). When PAHs accumulate on the phyllosphere, they significantly impact the fungal communities residing on leaf surfaces. This study aimed to investigate how pollution distribution patterns affect the diversity and PAHdegrading abilities of phyllosphere fungi, alongside identifying suitable mathematical models for PAH degradation. Leaf samples from two locations, Maradana and Sapugaskanda, were identified as having the highest PAH concentrations through principal component analysis. The fungal diversity in these highly contaminated regions was varied, with dominant species exhibiting greater PAH-degrading capabilities than those in less polluted areas. Thirty-five morphologically different epiphytic fungal strains were isolated on Potato Dextrose Agar (PDA) medium using the sample leaf wash. Two different fungal strains were selected as the best PAH degraders among those 35 different strains. These fungal strains were identified as Trichoderma harzianum P4M-16, and Fusarium solani P11M-46 based on ITS sequence data. Notably, these fungal species were more prevalent in highly polluted urban areas compared to less contaminated sites. High-Performance Liquid Chromatography (HPLC) analysis revealed that these two fungal species degrade PAHs more efficiently than others. Their kinetics assays demonstrated alignment with four degradation models when breaking down phenanthrene, naphthalene, pyrene, and anthracene. Scanning electron microscopy images showed that these fungi function as endophytes, extending their mycelium into the core leaf tissue layers beyond the epidermis. Gas Chromatography-Mass Spectrometry (GCMS) analysis indicated

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify