Browsing by Author "Zhou, J."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A global survey on the use of the international classification of diseases codes for metabolic dysfunction-associated fatty liver disease(Springer, 2024) Zhang, H.; Targher, G.; Byrne, C.D.; Kim, S.U.; Wong, V.W.; Valenti, L.; Glickman, M.; Ponce, J.; Mantzoros, C.S.; Crespo, J.; Gronbaek, H.; Yang, W.; Eslam, M.; Wong, R.J.; Machado, M.V.; Yu, M.; Ghanem, O.M.; Okanoue, T.; Liu, J.; Lee, Y.; Xu, X.; Pan, Q.; Sui, M.; Lonardo, A.; Yilmaz, Y.; Zhu, L.; Moreno, C.; Miele, L.; Lupsor-Platon, M.; Zhao, L.; LaMasters, T.L.; Gish, R.G.; Zhang, H.; Nedelcu, M.; Chan, W.K.; Xia, M.; Bril, F.; Shi, J.; Datz, C.; Romeo, S.; Sun, J.; Liu, D.; Sookoian, S.; Mao, Y.; Méndez-Sánchez, N.; Wang, X.; Pyrsopoulos, N.T.; Fan, J.; Fouad, Y.; Sun, D.; Giannini, C.; Chai, J.; Xia, Z.; Jun, D.W.; Li, G.; Treeprasertsuk, S.; Li, Y.; Cheung, T.T.; Zhang, F.; Goh, G.B.; Furuhashi, M.; Seto, W.; Huang, H.; Sessa, A.D.; Li, Q.; Cholongitas, E.; Zhang, L.; Silveira, T.R.; Sebastiani, G.; Adams, L.A.; Chen, W.; Qi, X.; Rankovic, I.; Ledinghen, V.D.; Lv, W.; Hamaguchi, M.; Kassir, R.; Müller-Wieland, D.; Romero-Gomez, M.; Xu, Y.; Xu, Y.; Chen, S.; Kermansaravi, M.; Kuchay, M.S.; Lefere, S.; Parmar, C.; Lip, G.Y.H.; Liu, C.; Åberg, F.; Lau, G.; George, J.; Sarin, S.K.; Zhou, J.; Zheng, M.; Niriella, M.A. (MAFLD ICD-11 coding collaborators)BACKGROUND With the implementation of the 11th edition of the International Classification of Diseases (ICD-11) and the publication of the metabolic dysfunction-associated fatty liver disease (MAFLD) nomenclature in 2020, it is important to establish consensus for the coding of MAFLD in ICD-11. This will inform subsequent revisions of ICD-11.METHODS Using the Qualtrics XM and WJX platforms, questionnaires were sent online to MAFLD-ICD-11 coding collaborators, authors of papers, and relevant association members.RESULTS A total of 890 international experts in various fields from 61 countries responded to the survey. We also achieved full coverage of provincial-level administrative regions in China. 77.1% of respondents agreed that MAFLD should be represented in ICD-11 by updating NAFLD, with no significant regional differences (77.3% in Asia and 76.6% in non-Asia, p = 0.819). Over 80% of respondents agreed or somewhat agreed with the need to assign specific codes for progressive stages of MAFLD (i.e. steatohepatitis) (92.2%), MAFLD combined with comorbidities (84.1%), or MAFLD subtypes (i.e., lean, overweight/obese, and diabetic) (86.1%).CONCLUSIONS This global survey by a collaborative panel of clinical, coding, health management and policy experts, indicates agreement that MAFLD should be coded in ICD-11. The data serves as a foundation for corresponding adjustments in the ICD-11 revision.Item Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.(Nature Publishing Group, 2019) Bentley, A.R.; Chasman, D. I.; Schwander, K.; Ntalla, I.; Kraja, A.T.; Winkler, T.W.; Brown, M. R.; Sung, Y. J.; Lim, E.; Huffman, J.E.; Vojinovic, D.; Sim, X.; Cheng, C.Y.; Lu, Y.; Liu, J.; Guo, X.; Deng, X.; Musani, S.K.; Li, C.; Feitosa, M.F.; Richard, M.A.; Noordam, R.; Baker, J.; Chen, G.; Aschard, H.; Bartz, T.M.; Ding, J.; Dorajoo, R.; Manning, A.K.; Rankinen, T.; Smith, A. V.; Tajuddin, S.M.; Zhao, W.; Graff, M.; Alver, M.; Boissel, M.; Chai, J. F.; Chen, X.; Divers, J.; Evangelou, E.; Gao, C.; Goel, A.; Hagemeijer, Y.; Harris, S. E.; Hartwig, F. P.; He, M.; Horimoto, A.R.V. R.; Hsu, F.C.; Hung, Y. J.; Jackson, A. U.; Kasturiratne, A.; Komulainen, P.; Kühnel, B.; Leander, K.; Lin, K. H.; Luan, J.; Lyytikäinen, L.P.; Matoba, N.; Nolte, I. M.; Pietzner, M.; Prins, B.; Riaz, M.; Robino, A.; Said, M. A.; Schupf, N.; Scott, R. A.; Sofer, T.; Stancáková, A.; Takeuchi, F.; Tayo, B. O.; van der Most, P. J.; Varga, T. V.; Wang, T. D.; Wang, Y.; Ware, E. B.; Wen, W.; Xiang, Y. B.; Yanek, L. R.; Zhang, W.; Zhao, J. H.; Adeyemo, A.; Afaq, S.; Amin, N.; Amini, M.; Arking, D.E.; Arzumanyan, Z.; Aung, T.; Ballantyne, C.; Barr, R. G.; Bielak, L. F.; Boerwinkle, E.; Bottinger, E.P.; Broeckel, U.; Chen, Y. I.; Charumathi, S.; Canouil, M.; Campbell, A.; Cade, B. E.; Brown, M.; Christensen, K.; de Las Fuentes, L.; Connell, J. M.; Concas, M. P.; COGENT-Kidney Consortium; de Silva, H.J.; de Vries, P. S.; Doumatey, A.; Duan, Q.; Eaton, C. B.; Eppinga, R.N.; Faul, J. D.; Floyd, J.S.; Gigante, B.; Gharib, S. A.; Forouhi, N.G.; Ghanbari, M.; Gao, H.; Gandin, I.; Friedlander, Y.; Forrester, T.; Hixson, J. E.; Hirata, M.; Justice, A. E.; Jonas, J. B.; Johnson, C.; Joehanes, R.; Jia, Y.; EPIC-InterAct Consortium; Ikram, M.A.; Katsuya, T.; Khor, C.C.; Kilpeläinen, T.O.; Koh, W. P.; Kolcic, I.; Kooperberg, C.; Krieger, J.E.; Kritchevsky, S.B.; Kubo, M.; Kuusisto, J.; Lakka, T. A.; Langefeld, C.D.; Langenberg, C.; Launer, L. J.; Lehne, B.; Lewis, C. E.; Li, Y.; Liang, J.; Lin, S.; Liu, C.T.; Liu, J.; Liu, K.; Loh, M.; Lohman, K.K.; Louie, T.; Luzzi, A.; Mägi, R.; Mahajan, A.; Manichaikul, A.W.; McKenzie, C.A.; Meitinger, T.; Metspalu, A.; Milaneschi, Y.; Milani, L.; Mohlke, K. L.; Momozawa, Y.; Morris, A. P.; Murray, A. D.; Nalls, M. A.; Nauck, M.; Nelson, C. P.; North, K. E.; O'Connell, J.R.; Palmer, N.D.; Papanicolau, G.J.; Pedersen, N. L.; Peters, A.; Peyser, P. A.; Polasek, O.; Poulter, N.; Raitakari, O.T.; Reiner, A. P.; Renström, F.; Rice, T.K.; Rich, S.S.; Robinson, J.G.; Rose, L. M.; Rosendaal, F. R.; Rudan, I.; Schmidt, C.O.; Schreiner, P. J.; Scott, W.R.; Sever, P.; Shi, Y.; Sidney, S.; Sims, M.; Smith, J. A.; Snieder, H.; Starr, J. M.; Strauch, K.; Stringham, H. M.; Tan, N. Y. Q.; Tang, H.; Taylor, K. D.; Teo, Y. Y.; Tham, Y. C.; Tiemeier, H.; Turner, S. T.; Uitterlinden, A. G.; Understanding Society Scientific Group; van Heemst, D.; Waldenberger, M.; Wang, H.; Wang, L.; Wang, L.; Wei, W. B.; Williams, C. A.; Wilson, G. Sr.; Wojczynski, M. K.; Yao, J.; Young, K.; Yu, C.; Yuan, J. M.; Zhou, J.; Zonderman, A. B.; Becker, D. M.; Boehnke, M.; Bowden, D. W.; Chambers, J. C.; Cooper, R. S.; de Faire, U.; Deary, I. J.; Elliott, P.; Esko, T.; Farrall, M.; Franks, P. W.; Freedman, B. I.; Froguel, P.; Gasparini, P.; Gieger, C.; Horta, B. L.; Juang, J. J.; Kamatani, Y.; Kammerer, C. M.; Kato, N.; Kooner, J. S.; Laakso, M.; Laurie, C. C.; Lee, I. T.; Lehtimäki, T.; Lifelines Cohort; Magnusson, P. K. E.; Oldehinkel, A. J.; Penninx, B. W. J. H.; Pereira, A. C.; Rauramaa, R.; Redline, S.; Samani, N. J.; Scott, J.; Shu, X. O.; van der Harst, P.; Wagenknecht, L. E.; Wang, J. S.; Wang, Y. X.; Wareham, N. J.; Watkins, H.; Weir, D. R.; Wickremasinghe, A.R.; Wu, T.; Zeggini, E.; Zheng, W.; Bouchard, C.; Evans, M. K.; Gudnason, V.; Kardia, S. L. R.; Liu, Y.; Psaty, B. M.; Ridker, P. M.; van Dam, R. M.; Mook-Kanamori, D. O.; Fornage, M.; Province, M. A.; Kelly, T. N.; Fox, E. R.; Hayward, C.; van Duijn, C. M.; Tai, E. S.; Wong, T. Y.; Loos, R. J. F.; Franceschini, N.; Rotter, J. I.; Zhu, X.; Bierut, L. J.; Gauderman, W. J.; Rice, K.; Munroe, P. B.; Morrison, A. C.; Rao, D. C.; Cupples, L. A.; Rotimi, C. N.The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.