Zoology
Permanent URI for this collectionhttp://repository.kln.ac.lk/handle/123456789/3752
Browse
Item Impacts of a partially connected wastewater treatment plant on the water quality of stormwater drains used as an irrigation source(2024) Samaraweera, S. A. P. T.; Najim, M. M. M.; Alotaibi, Bader Alhafi; Traore, AbouUrban stormwater drains in Kurunegala City collect runoff and untreated wastewater, leading to public health problems. The Greater Kurunegala Sewage Treatment Plant (GKSTP) was commissioned in 2018 and currently operates at 73% of its capacity to combat public health issues. This study assessed the water quality of canals, comparing it with standards and pre- GKSTP conditions. Water samples were collected from seven sites during dry and wet seasons, and physicochemical parameters were measured. The data underwent spatial and temporal analysis using the general linear model (GLM). Additionally, cluster analysis and distance-based redundancy analysis were employed. The water quality index (WQI) was employed to evaluate the effectiveness of the treatment plant. The study revealed significant spatial and temporal variations in physicochemical parameters along the canals (p < 0.05, GLM), with higher pollution levels during wet months. The WQI improved from 35 (2005) to 49 at present, indicating enhanced water quality (p < 0.05, ANOVA), although it remains unsatisfactory. This study provides novel insights into the limitations of conventional wastewater treatment practices, demonstrating that merely treating wastewater and discharging it back into canals is insufficient. Research underscores the importance of rethinking treated wastewater reuse in achieving multiple sustainable development goals (SDGs). This approach offers a pragmatic path forward for enhancing water security and environmental] sustainability globally.Item Sustainable Approaches forWastewater Treatment: An Analysis of Sludge-Based Materials for Heavy Metal Removal from Wastewater by Adsorption(2023) Rajakaruna, R. M. A. S. Dhananjana; Sewwandi, B. G. N.; Najim, Mohamed M. M.; Baig, Mirza Barjees; Alotaibi, Bader Alhafi; Traore, AbouA comprehensive study incorporating results from different findings related to heavy metal removals from wastewater using sludge as an absorbent will assist researchers and practitioners in planning wastewater treatment processes. This study aims to provide a comprehensive foundation on the potential of using sludge-based materials to remove heavy metals from wastewater based on recent studies. The physicochemical properties of sludge and the nature of metal ions have significantly contributed to the adsorption of heavy metals into sludge-based materials. Many researchers found the effects of pH, temperature, initial heavy metal concentrations, contact time, and adsorbent dose on the adsorption characteristics of heavy metals into sludge-based materials. Isotherm, kinetic, and thermodynamic studies have explained the mechanism of heavy metal adsorption by sludge-based materials. The effectiveness of regeneration of sludge-based adsorbents has been investigated by some researchers, providing an environmentally friendly solution to remove heavy metals from wastewater. It was found that less attention has been paid to metal recovery and recycling of sludge-based adsorbents, which indicates the need for future studies to enhance the reusability of sludge in wastewater treatment. Moreover, many studies have been conducted as lab-scale experiments on heavy metal adsorption from aqueous solutions using sludge-based adsorbents, leaving a research gap for future studies to focus on the removal of heavy metals from actual wastewater at field scale.