IPRC - 2018
Permanent URI for this collectionhttp://repository.kln.ac.lk/handle/123456789/19163
Browse
4 results
Search Results
Item Antagonist Potential of Vorticella microstoma on the larval development of Culex gelidus and Aedes aegypti(19th Conference on Postgraduate Research, International Postgraduate Research Conference 2018, Faculty of Graduate Studies,University of Kelaniya, Sri Lanka, 2018) Ranasinghe, H.A.K.; Amarasinghe, L.D.Selection of effective biological agents which can suppress the growth of immature stages of mosquito vectors has drawn a wide attention in disease control programmes. Vorticella microstoma is a parasitic ciliate which has an ability to parsitize on larval stages of mosquitoes and inhibit their growth. However, the potential antagonist activity has not been evaluated in detail in Sri Lanka. Fifteen each of first, second, and third instar larvae of Cx. gelidus and Ae. aegypti were placed in separate V. microstoma culture bottles at room temperature (27± 2 ºC) and mortality rate of mosquito larvae was observed after 48 h. Bioassay was done in completely randomized design with controls. The first, second, and third instar larvae of Cx. gelidus were allowed to be infested with the trophont stage of V. microstoma. Heavily infested larvae with V. microstoma were identified by the presence of parasites attached all over the body surface. V. microstoma trophonts did not usually attach to siphon region of mosquito larvae when they are alive. None of the instar levels of Ae. aegypti showed susceptible to infection with V. microstoma. In the first instar larvae of Cx. gelidus, thorax and the abdominal segments had the attachment of 30–35 trophonts of V. microstoma, whereas 2–4 trophonts had attached to the anal papillae. Higher densities of V. microstoma were found in abdominal segments of second instar larvae of Cx. gelidus, whereas total of 45–50 trophonts had attached to thoracic region and abdominal segments. Fifty to fifty-five trophonts of V. microstoma had attached to third instar larvae of Cx. gelidus, with higher densities in the anal papillae followed by abdominal segments; in the anal papillae, 20–25 trophonts were found to be attached. V. microstoma infection was positively correlated with the body size of mosquito larvae. The percentage mortality of the first, second, and third instar larvae of Cx. gelidus did not significantly differ from each other (One-Way ANOVA: IBM SPSS Statistic Software, P<0.05). Therefore, the study results would be a new avenue to work on environmentally agreeable manner in reducing the Cx. gelidus vector mosquito populations.Item Isolation of a Potential Microbial Agent for Controlling Dengue Vector Mosquitoes in Sri Lanka(19th Conference on Postgraduate Research, International Postgraduate Research Conference 2018, Faculty of Graduate Studies,University of Kelaniya, Sri Lanka, 2018) Induwara, R.; Fernando, M.; Ranathunge, T.; Parakrama, G.; Hapugoda, M.Controlling dengue vector mosquito is the most appropriate controlling method for dengue in the absence of an effective drug or a vaccine for dengue viruses. Vector control can be performed using variety of approaches such as environmental management, chemical and biological control etc.; which have been used in recent vector control activities. Due to the development of resistant varieties against chemical insecticides, the present study attempted to identify larvicidal activity of bacteria collected from the natural environment, as an ideal environmental friendly and effective strategy for controlling Aedesaegypti (Linnaeus), a dengue vector mosquito species. Zero dengue infection was reported in Pudumurippu area in the District of Kilinochchi, Northern Province of Sri Lanka in a preliminary survey. Spore forming microbes were isolated through spread plate technique using water and sediment samples collected from a reservoir in Pudumurippu. Larvicidal activity of each isolate was tested by Ae. aegypti third instar Larvae (L3) in vitro. The highest larvicidal activity was observed in an isolated bacterium from a reservoir water sample under laboratory and field conditions. This bacterium was presumptively identified and subjected to 16s-rRNA sequence analysis. Larvicidal activity of this bacterium was compared with a currently used Bacillus thuringiensisisraelensis (Bti). As well as optimum physiological characteristic features of isolated strain was determined by growing the bacteria strain on nutrient agar supplemented with different NaCl concentrations and different pH values. Isolated bacterium was confirmed as a new strain of Bacillus cereus (SL001; MG827268). This bacterial strain showed the highest larvicidal activity at 5% (1×105 CFU/ml), with mean cumulative mortality rate 92±4.1% and 84.2 ±5.3% at 48 hours’ post challenged under laboratory and field conditions respectively. When compared with Bti, this novel strain showed significantly higher (p < 0.05) larvicidal activity. B. cereus (SL001) displayed high growth rate while tolerating wide range of salinity (0-30gL-1) and pH (6-10). Based on the findings, B. cereus (SL001) with the highest larvicide efficiencies could be an ideal candidate for biological controlling of Ae. aegypti dengue vector mosquitoes in Sri Lanka. Further analysis of this bacterium is on going at present.Item A Statistical Approach to Define Thresholds for Dengue Epidemic Management in Akurana Medical Officer of Health Area, Kandy District of Sri Lanka(19th Conference on Postgraduate Research, International Postgraduate Research Conference 2018, Faculty of Graduate Studies,University of Kelaniya, Sri Lanka, 2018) Udayanga, N.W.B.A.L.; Gunathilaka, P.A.D.H.N.; Iqbal, M.C.M.; Fernando, M.A.S.T.; Abeyewickreme, W.Stegomyia indices, namely; Premise Index (PI), Breteau Index (BI) and Container Index (CI) are used forvector management approaches in Sri Lanka. Properly defined threshold values for larval indices are of higher importance to provide forecasts on dengue epidemics and also for effective larval management of dengue vectors. However, such critical thresholds are poorly defined for Sri Lanka. The present study aimed to define threshold values forabove larval indices for dengue epidemic management in the Akurana Medical Officer of Health (MOH) in the Kandy District. Larval surveys were conducted on a monthly basis from January, 2016 to June, 2018. Four larval indices, namely BI for Aedesaegypti (BIA) and Aedesalbopictus (BIB), PI and CI were calculated. Further, monthly larval indices of AkuranaMOH area from January, 2012 to December, 2015, were obtained from the MOH office, along with monthly reported dengue cases for the entire study period. Receiver Operating Characteristic (ROC) curves in SPSS (version 23) were used to assess the discriminative power of the larval indices in determiningdengue epidemics and thresholds based on larval indices. As indicated by the area of ROC curve (AUC), the BIA (0.661) and PI (0.637) were having a notable discriminative power to forecast dengue epidemics at a two-month lag period. Both BIB (0.397) and CI (0.526) were non-informative influencers at one and two-month lag periods. The BIA and PI were better predictors of dengue incidence than BIB and CI. Based on the ROC curve, three risk thresholds were defined for BIA as Low Risk (BIA≤2.1), Moderate Risk (3.9≤BIA<4.85), and High Risk (BIA≥4.85), with respect to Ae. aegypti. According to the PI, thresholds were defined as Low Risk (PI≤6.2), Moderate Risk (7.7≤ PI<9.9), and High Risk (PI≥ 9.9). Threshold values defined for BI of Ae. aegypti and PI, could be recommended to be considered in implementing vector control efforts in the above study area for effective dengue epidemic management, through pre planned entomological management of dengue vectors.Item Laboratory Evaluation of the Bio-control Efficacy of Selected Copepods on Dengue Vectors of Sri Lanka(19th Conference on Postgraduate Research, International Postgraduate Research Conference 2018, Faculty of Graduate Studies,University of Kelaniya, Sri Lanka, 2018) Udayanga, N.W.B.A.L.; Ranathunge, R.M.T.; Iqbal, M.C.M.; Abeyewickreme, W.; Hapugoda, M.Among variety of alternatives for management of dengue vectors, biological control remains as a promising approach, due to its high efficacy, sustainability and low impacts on human and ecosystem health. Copepods are considered asa leading predator of mosquito larvae including Aedes vectors. However, the predatory potential of different copepods on bio-control of dengue vectors has been less studied in Sri Lanka. Therefore, the current study aimed to evaluate the predatory success of five locally abundant copepods on both AedesaegyptiandAe. albopictus. Copepod collections were made from water bodies and rock pools located in the Kandy and Gampaha districts by using a plankton net. After morphological identification, single gravid copepods of different species were used to establish copepod cultures under standard laboratory conditions. Five adult copepods of each species were transferred into containers and groups of 200 first instar Ae. Aegypti larvae were introduced in to each container, separately. The number of surviving larvae in each container was recorded at 3 hour intervals up to 24 hours. Five replicates were conducted for each copepod species. Same experimental design was followed for Ae. albopictus. General Linear Modelling technique (GLM) followed by Tukey’s pair-wise comparison was used to make statistical inferences on the significance of average larvalconsumption rates by studied copepod species. SPSS (version 23) was used for the statistical analysis. Five species of copepods, namely Cyclops languides, C. varicans, C. vernalis, Mesocyclopleuckarti and M. scrassus were considered during the study. Average predation rates of 34.9±1.80 and 33.5±1.06 for Ae. aegypti and Ae. albopictus, respectively, were indicated by M. leuckartias the highest predation rates. Meanwhile, M. scrassus showed the second highest predation rates for both Aedes vectors. On the other hand, the lowest predatory efficacy was shown by C. languides with 10.6+1.60 and 8.4+1.10 for Ae. aegypti and Ae. albopictus, respectively. The average consumption rates of different copepod species varied significantly (p<0.05 at 5% level of significance). The type of Aedes species had a significant influence on the predatory efficacy of studied copepods (p< 0.05) under laboratory conditions. In conclusion, M. leuckartiand M. scrassus that reported the highest predation efficacies on both Aedes larvae could be suggested as potential bio-control agents for dengue vector management approaches in Sri Lanka after semi field and field settings.