Journal/Magazine Articles
Permanent URI for this collectionhttp://repository.kln.ac.lk/handle/123456789/13
This collection contains original research articles, review articles and case reports published in local and international peer reviewed journals by the staff members of the Faculty of Medicine
Browse
110 results
Search Results
Item Improving psychological well-being among healthcare workers during the COVID-19 pandemic with an online mindfulness intervention: A randomised waitlist-controlled trial(Wiley, 2024) Baminiwatta, A.; Fernando, R.; Solangaarachchi, I.; Abayabandara-Herath, T.; Wickremasinghe, A.R.; Hapangama, A.The high prevalence of psychological problems observed among healthcare workers (HCWs) during the COVID-19 pandemic called for interventions to safeguard their mental health. We assessed the effectiveness of a 6-week online mindfulness-based intervention in improving well-being and reducing stress among HCWs in Sri Lanka. Eighty HCWs were recruited and randomised into two groups: waitlist-control (WLC) and intervention groups. In the intervention, 1-hour online sessions were conducted at weekly intervals and participants were encouraged to do daily home practice. Stress and well-being were measured pre- and post-intervention using the Perceived Stress Scale and WHO-5 Well-being Index, respectively. One-way analysis of covariance was used to evaluate the effectiveness, in both intention-to-treat (ITT) and complete-case (CC) analyses. A significantly greater improvement in well-being occurred in the intervention arm compared to WLC on both ITT (p = .002) and CC analyses (p < .001), with medium-to-large effect sizes (partial η2 = .117-.278). However, the reduction in stress following the intervention was not significant compared to the WLC group on both ITT (p = .636) and CC analyses (p = .262). In the intervention arm, the median number of sessions attended by participants was 3. Low adherence to the intervention may have contributed to the apparent non-significant effect on stress.Item Effect of virgin coconut oil supplementation on cognition of individuals with mild-to-moderate alzheimer's disease in Sri Lanka (VCO-AD study): A randomized placebo-controlled trial(IOS Press, 2023) Fernando, M.G.; Silva, R.; Fernando, W.M.A.D.B.; de Silva, H.A.; Wickremasinghe, A.R.; Dissanayake, A.S.; Sohrabi, H.R.; Martins, R.N.; Williams, S.S.BACKGROUND: Virgin coconut oil (VCO) is a potential therapeutic approach to improve cognition in Alzheimer’s disease (AD) due to its properties as a ketogenic agent and antioxidative characteristics. OBJECTIVE: This study aimed to investigate the effect of VCO on cognition in people with AD and to determine the impact of apolipoprotein E (APOE) ɛ4 genotype on cognitive outcomes. METHODS: Participants of this double-blind placebo-controlled trial (SLCTR/2015/018, 15.09.2015) were 120 Sri Lankan individuals with mild-to-moderate AD (MMSE = 15-25), aged > 65 years, and they were randomly allocated to treatment or control groups. The treatment group was given 30 mL/day of VCO orally and the control group, received similar amount of canola oil, for 24 weeks. The Mini-Mental Sate Examination (MMSE) and Clock drawing test were performed to assess cognition at baseline and at the end of the intervention. Blood samples were collected and analyzed for lipid profile and glycated hemoglobin (HbA1 C) levels.∥ RESULTS: There were no significant difference in cognitive scores, lipid profile, and HbA1 C levels between VCO and control groups post-intervention. The MMSE scores, however, improved among APOE ɛ4 carriers who had VCO, compared to non-carriers (2.37, p = 0.021). APOE ɛ4 status did not influence the cognitive scores in the control group. The attrition rate was 30%.∥ CONCLUSION: Overall, VCO did not improve cognition in individuals with mild-to-moderate AD following a 24-week intervention, compared to canola oil. However, it improved the MMSE scores in APOE ɛ4 carriers. Besides, VCO did not compromise lipid profile and HbA1 C levels and is thus safe to consume.Item Elimination of malaria from Sri Lanka and beyond; lessons for other countries in elimination phase(Sri Lanka Medical Association, 2023) Wickremasinghe, A.R.Elimination of malaria in 2012 was a major achievement in post-independent Sri Lanka. Sri Lanka missed a golden opportunity in 1963 when only 17 cases of malaria were reported in the country, but could not sustain the momentum resulting in a major resurgence in 1967/69. With the resurgence, the then malaria eradication programme was reverted back to a control programme that lasted for another 30 years. The WHO's Roll Back Malaria Initiative launched in 1998 provided a renewed interest in malaria control and subsequent elimination. With targeted control activities, the burden of malaria started to decrease since year 2000. Although Sri Lanka had reached pre-elimination status as early as 2004, the ongoing separatist war at that time prevented a country-wide elimination drive being implemented. With cessation of hostilities in 2009 and Global Fund financing, both of which were crucial inputs, an elimination drive was launched in September 2009 which eventually eliminated indigenous malaria in November 2012 with malaria-free certification by WHO being obtained in September 2016. Since malaria elimination, the country forged on to the prevention of re-establishment phase primarily focusing on good public practice that included intensified surveillance, both parasitological and entomological; quality assured diagnostic and treatment services; and advocacy at various level including doctors. Despite these measures, an introduced case and an induced case of malaria have been reported. A new vector of urban malaria, Anopheles stephensi, was reported in December 2016. Prevention of re-establishment of malaria should be kept in the radar of public health until malaria is eradicated.Item A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids(American Society of Human Genetics., 2022) Ramdas, S.; Judd, J.; Graham, S.E.; Kanoni, S.; Wang, Y.; Surakka, I.; Wenz, B.; Clarke, S.L.; Chesi, A.; Wells, A.; Bhatti, K.F.; Vedantam, S.; Winkler, T.W.; Locke, A.E.; Marouli, E.; Zajac, G.J.M.; Wu, K.H.; Ntalla, I.; Hui, Q.; Klarin, D.; Hilliard, A.T.; Wang, Z.; Xue, C.; Thorleifsson, G.; Helgadottir, A.; Gudbjartsson, D.F.; Holm, H.; Olafsson, I.; Hwang, M.Y.; Han, S.; Akiyama, M.; Sakaue, S.; Terao, C.; Kanai, M.; Zhou, W.; Brumpton, B.M.; Rasheed, H.; Havulinna, A.S.; Veturi, Y.; Pacheco, J.A.; Rosenthal, E.A.; Lingren, T.; Feng, Q.; Kullo, I.J.; Narita, A.; Takayama, J.; Martin, H.C.; Hunt, K.A.; Trivedi, B.; Haessler, J.; Giulianini, F.; Bradford, Y.; Miller, J.E.; Campbell, A.; Lin, K.; Millwood, I.Y.; Rasheed, A.; Hindy, G.; Faul, J.D.; Zhao, W.; Weir, D.R.; Turman, C.; Huang, H.; Graff, M.; Choudhury, A.; Sengupta, D.; Mahajan, A.; Brown, M.R.; Zhang, W.; Yu, K.; Schmidt, E.M.; Pandit, A.; Gustafsson, S.; Yin, X.; Luan, J.; Zhao, J.H.; Matsuda, F.; Jang, H.M.; Yoon, K.; Gomez, C.M.; Pitsillides, A.; Hottenga, J.J.; Wood, A.R.; Ji, Y.; Gao, Z.; Haworth, S.; Mitchell, R.E.; Chai, J.F.; Aadahl, M.; Bjerregaard, A.A.; Yao, J.; Manichaikul, A.; JaneLee, W.; Hsiung, C.A.; Warren, H.R.; Ramirez, J.; Jensen, J.B.; Kårhus, L.; Goel, A.; Lleal, M.S.; Noordam, R.; Mauro, P.; Matteo, F.; McDaid, A.F.; Marques-Vidal, P.; Wielscher, M.; Trompet, S.; Sattar, N.; Møllehave, L.T.; Munz, M.; Zeng, L.; Huang, J.; Yang, B.; Poveda, A.; Kurbasic, A.; Schönherr, S.; Forer, L.; Scholz, M.; Galesloot, T.E.; Bradfield, J.P.; Ruotsalainen, S.E.; Daw, E.W.; Zmuda, J.M; Mitchell, J.S.; Fuchsberger, C.; Christensen, H.; Brody, J.A.; Le, P.; Feitosa, M.F.; Wojczynski, M.K.; Hemerich, D.; Preuss, M.; Mangino, M.; Christofidou, P.; Verweij, N.; Benjamins, J.W.; Engmann, J.; Noah, T.L.; Verma, A.; Slieker, R.C.; Lo, K.S.; Zilhao, N.R.; Kleber, M.E.; Delgado, G.E.; Huo, S.; Ikeda, D.D.; Iha, H.; Yang, J.; Liu, J.; Demirkan, A.; Leonard, H.L.; Marten,J.; Emmel, C.; Schmidt, B.; Smyth, L.J.; Cañadas-Garre, M.; Wang, C.; Nakatochi, M.; Wong, A.; Hutri-Kähönen , N.; Sim, X.; Xia, R.; Huerta-Chagoya, A.; Fernandez-Lopez, J.C.; Lyssenko, V; Nongmaithem, S.S.; Sankareswaran, A.; Irvin, M.R.; Oldmeadow, C.; Kim, H.N.; Ryu, S.; Timmers, P.R.H.J; Arbeeva, L.; Dorajoo, R.; Lange, L.A.; Prasad, G.; Lorés-Motta, L.; Pauper, M.; Long, J.; Li, X.; Theusch, E.; Takeuchi, F.; Spracklen, C.N.; Loukola, A.; Bollepalli, S.; Warner, S.C.; Wang, Y.X.; Wei, W.B.; Nutile, T.; Ruggiero, D.; Sung,Y.J.; Chen, S.; Liu, F.; Yang, J.; Kentistou, K.A.; Banas, B.; Morgan, A.; Meidtner, K.; Bielak, L.F.; Smith, J.A.; Hebbar, P.; Farmaki, A.E.; Hofer, E.; Lin, M.; Concas, M.P.; Vaccargiu, S.; Most, P.J.; Pitkänen, N.; Cade, B.E.; Laan, S.W.; Chitrala, K.N.; Weiss, S.; Bentley, A.R.; Doumatey, A.P.; Adeyemo, A.A.; Lee, J.Y.; Petersen, E.R.B.; Nielsen, A.A.; Choi, H.S.; Nethander, M.; Nethander, M.; Freitag-Wolf, S.; Southam, L.; Rayner, N.W.; Wang, C.A.; Lin, S.; Wang, J.S.; Couture, C.; Lyytikäinen, L.P.; Nikus, K.; Partida, G.C.; Vestergaard, H.; Hidalgo, B.; Giannakopoulou, O.; Cai, Q.; Obura, M.O.; Setten, J.; He, K.Y.; Tang, H.; Terzikhan, N.; Shin, J.H.; Jackson, R.D.; Reiner, A.P.; Martin, L.W.; Chen, Z.; Li, L.; Kawaguchi, T.; Thiery, J.; Bis, J.C.; Launer, L.J.; Li, H.; Nalls, M.A.; Raitakari, O.T.; Ichihara, S.; Wild, S.H.; Nelson, C.P.; Campbell, H.; Jäger, S.; Nabika, T.; Al-Mulla, F.; Niinikoski, H.; Braund, P.S.; Kolcic, I.; Kovacs, P.; Giardoglou, T.; Katsuya, T.; Kleijn, D.; Borst, G.J.; Kim, E.K.; Adams, H.H.H.; Ikram, M.A.; Zhu, X.; Asselbergs, F.W.; Kraaijeveld, A.O.; Beulens, J.W.J.; Shu, X.O.; Rallidis, L.S.; Pedersen, O.; Hansen, T.; Mitchell, P.; Hewitt, A.W.; Kähönen, M.; Pérusse, L.; Bouchard, C.; Tönjes, A.; Chen, Y.D.I; Pennell, C.E.; Mori, T.A.; Lieb, W.; Franke, A.; Ohlsson, C.; Mellström, D.; Cho, Y.S.; Lee, H.; Yuan, J.M.; Koh, W.P.; Rhee, S.Y.; Woo, J.T.; Heid, I.M.; Stark, K.J.; Zimmermann, M.E.; Völzke, H.; Homuth, G.; Homuth, G.; Evans, M.K.; Zonderman, A.B.; Polasek, O.; Pasterkamp, G.; Hoefer, I.E.; Redline, S.; Pahkala, K.; Oldehinkel, A.J.; Snieder, H.; Biino, G.; Schmidt, R.; Schmidt, H.; Bandinelli , S; Dedoussis, G.; Thanaraj, T.A.; Peyser, P.A.; Kato, N.; Schulze, M.B.; Girotto, G.; Böger, C.A.; Jung, B.; Joshi, P.K.; Bennett, D.A.; Jager, P.L.D.; Lu, X.; Mamakou, V.; Brown, M.; Caulfield, M.J.; Munroe, P.B.; Guo, X.; Ciullo, M.; Jonas, J.B.; Samani, N.J.; Kaprio, J.; Pajukanta, P.; Luna, T.T.; Salinas, C.A.A.; Adair, L.S.; Bechayda, S.A.; de Silva, H.J.; Wickremasinghe, A.R.; Krauss, R.M.; Wu, J.Y.; Zheng,W.; Hollander, A.I.; Bharadwaj, D.; Correa, A,; Wilson, J.G.; Lind, L.; Heng, C.K.; Nelson, A.E.; Golightly, Y.M.; Wilson, J.F.; Penninx, B.; Kim, H.L.; Attia, J.; Scott, R.J.; Rao, D.C.; Arnett, D.K.; Walker, M.; Scott, L.J.; Koistinen, H.A.; Chandak, G.R.; Mercader, J.M.; Villalpando, C.G.; Orozco, L.; Fornage, M.; Tai, E.S.; Dam, R.M.; Lehtimäki, T.; Chaturvedi, N.; Yokota, M.; Liu, J.; Reilly, D.F.; McKnight, A.J.; Kee, F.; Jöckel, K.H.; McCarthy, M.I.; Palmer, C.N.A.; Vitart, V.; Hayward, C.; Simonsick, E.; Duijn, C.M; Jin, Z.B.; Jin, Z.B.; Lu, F.; Hishigaki, H.; Lin, X.; März, W.; Gudnason, V.; Tardif, J.C.; Lettre, G.; Hart, L.M.T.; Elders, P.J.M.; Rader, D.J.; Loos, S.M.; Province, M.A.; Parra, E.J.; Cruz, M.; Psaty, B.M.; Brandslund, I.; Pramstaller, P.P.; Rotimi, C.N.; Christensen, K.; Ripatti, S.; Widén, E.; Hakonarson, H.; Grant, S.F.A.; Kiemeney, L.; de Graaf, J.; Loeffler, M.; Kronenberg, F.; Gu, D.; Erdmann, J.; Schunkert, H.; Franks,P.W.; Linneberg, A.; Jukema, J.W.; Khera, A.V.; Männikkö, M.; Jarvelin, M.R.; Kutalik, Z.; Francesco, C.; Kanamori, D.O.M.; Dijk, K.W.; Watkins, H.; Strachan, D.P.; Grarup, N.; Sever, P.; Poulter, N.; Sheu, W.H.H.; Rotter, J.I.; Dantoft, T.M.; Karpe, F.; Neville, M.J.; Timpson, N.J.; Cheng, C.Y.; Wong, T.Y.; Khor, C.C.; Li, H.; Sabanayagam, C.; Peters, A.; Gieger, C.; Hattersley, A.T.; Pedersen, N.L.; Magnusson, P.K.E.; Boomsma, D.I.; de Geus, E.J.C.; Cupples, L.A.; Meurs, J.B.J.; Ikram, A.; Ghanbari, M.; Larsen, P.G.; Huang, W.; Kim, Y.J.; Tabara, Y.; Wareham, N.J.; Langenberg, C.; Zeggini, E.; Tuomilehto, J.; Kuusisto, J.; Laakso, M.; Ingelsson, E.; Abecasis, G.; Chambers, J.C.; Kooner, J.S.; de Vries, P.S.; Morrison, A.C.; Hazelhurst, S.; Ramsay, M.; North, K.E.; Daviglus, M.; Kraft, P.; Martin, N.G.; Whitfield, J.B.; Abbas, S.; Saleheen, D.; Walters, R.G.; Holmes, M.V.; Black, C.; Smith, B.H.; Baras, A.; Justice, A.E.; Buring, J.E.; Ridker, P.M.; Chasman, D.I.; Kooperberg, C.; Tamiya, G.; Yamamoto, M.; Heel, D.A.; Trembath, R.C.; Wei, W.Q.; Jarvik, G.P.; Namjou, B.; Hayes, M.G.; Ritchie, M.D.; Jousilahti, P.; Salomaa, V.; Hveem, K.; Åsvold, B.O.; Kubo, M.; Kamatani, Y.; Okada, Y.; Murakami, Y.; Kim, B.J.; Thorsteinsdottir, U.; Stefansson, K.; Zhang, J.; Chen, Y.E.; Ho, Y.L.; Lynch, J.A.; Tsao, P.S.; Chang, K.M.; Cho, K.; O'Donnell, C.J.; Gaziano, J.M.; Wilson, P.; Mohlke, K.L.; Frayling, T.M.; Hirschhorn, J.N.; Kathiresan, S.; Boehnke, M.; Million Veterans Program; Global Lipids Genetics Consortium; Grant, S.; Natarajan, P.; Sun, Y.V.; Morris, A.P.; Deloukas, P.; Peloso, G.; Assimes, T.L.; Willer, C.J.; Zhu, X.; Brown, C.D.A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.Item Reference equations for evaluation of spirometry function tests in South Asia, and amongst south asians living in other countries(European Respiratory Society, 2022) Leong, W.Y.; Gupta, A.; Hasan, M.; Mahmood, S.; Siddiqui, S.; Ahmed, S.; Goon, I.Y.; Loh, M.; Mina, T.H.; Lam, B.; Yew, Y.W.; Ngeow, J.; Lee, J.; Lee, E.S.; Riboli, E.; Elliott, P.; Tan, G.P.; Chotirmall, S.H.; Wickremasinghe, A.R.; Kooner, J.S.; Khawaja, K.I.; Katulanda, P.; Mridha, M.K.; Jha, S.; Ranjit, M.A.; Pradeepa, G.; Kasturiratne, A.; Chambers, J.C.Background: There is little data to accurate interpretation of spirometry data in South Asia, a major global region with high reported burden for chronic respiratory disease. Method: We measured lung function in 7,453 healthy men and women aged over 18 years, from Bangladesh, North India, South India, Pakistan and Sri Lanka, as part of the South Asia Biobank study. We first assessed the accuracy of existing equations for predicting normal forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and FEV1/FVC ratio. We then used our data to derive (N=5589) and internally validate (N=1864) new prediction equations amongst South Asians, with further external validation amongst 339 healthy South Asians living in Singapore. Results: GLI2012 and NHANESIII consistently overestimated expiratory volumes (best fit GLI-African American, mean [sd] z-score (n=7453): FEV1 -0.94 [1.05]; FVC -0.91 [1.10]). Age, height and weight were strong predictors of lung function in our participants (p<0.001), and sex specific reference equations using these three variables were highly accurate in both internal validation (z-scores: FEV1 0.03 [0.99]; FVC 0.04 [0.97]; FEV1/FVC -0.03 [0.99]) and external validation (z-scores: FEV1 0.31 [0.99]; FVC 0.24 [0.97]; FEV1/FVC 0.16 [0.91]). Further adjustment for study regions improves the model fit, with highest accuracy for estimation of region specific lung function in South Asia. Conclusion: We present improved equations for predicting lung function in South Asians. These offer the opportunity to enhance diagnosis and management of acute and chronic lung diseases in this major global population.Item Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation(Nature Publishing Company, New York, 2022) Mahajan, A.; Spracklen, C.N.; Zhang, W.; Ng, M.C.Y.; Petty, L.E.; Kitajima, H.; Yu, G.Z.; Rüeger, S.; Speidel, L.; Kim, Y.J.; Horikoshi, M.; Mercader, J.M .; Taliun, D.; Moon, S.; Kwak, S.H.; Robertson, N.R.; Rayner, N.W.; Loh, M.; Kim, B.; Chiou, J.; Miguel-Escalada, I.; Parolo, P.D.B.; Lin, K.; Bragg, F.; Preuss, M.H.; Takeuchi, F.; Nano, J.; Guo, X.; Lamri, A.; Nakatoch, M.; Scott, R.A.; Lee, J.J.; Huerta-Chagoya, A.; Graff, M.; Chai, J.F.; Parra, E. J.; Yao, J.; Bielak, L.F.; Tabara, Y.; Hai, Y.; Steinthorsdottir, V.; Cook, J.P.; Kals, M.; Grarup, N.; Schmidt, E.M.; Pan, I.; Sofer, T.; Wuttke, M.; Sarnowski, C.; Gieger, C.; Nousome, D.; Trompet, S.; Long, J.; Sun, M.; Tong, L.; Chen, W.M.; Ahmad, M.; Noordam, R.; Lim, V.J.Y.; Tam, C.H.T.; Joo, Y.Y.; Chen, C.H.; Raffield, L.M.; Lecoeur, C.; Prins, B.P.; Nicolas, A.; Yanek, L.R.; Chen, G.; Jensen, R.A.; Tajuddin, S.; Kabagambe, E.K.; An, P.; Xiang, A.H.; Choi, H.S.; Cade, B.E.; Tan, J.; Flanagan, J.; Abaitua, F.; Adair, L.S.; Adeyemo, A.; Aguilar-Salinas, C.A.; Akiyama, M.; Anand, S.S.; Bertoni, A.; Bian, Z.; Bork-Jensen, J.; Brandslund, I.; Brody, J.A.; Brummett, C.M.; Buchanan, T.A.; Canouil, M.; Chan, J.C.N.; Chang, L.C.; Chee, M.L.; Chen, J.; Chen, S.H.; Chen, Y.T.; Chen, Z.; Chuang, L.M.; Cushman, M.; Das, S.K.; de Silva, H.J.; Dedoussis, G.; Dimitrov, L.; Doumatey, A.P.; Du, S.; Duan, Q.; Eckardt, K.U.; Emery, L.S.; Evans, D.S.; Evans, M.K.; Fischer, K.; Floyd, J.S.; Ford, I.; Fornage, M.; Franco, O.H.; Frayling, T.M.; Freedman, B.I.; Fuchsberger, C.; Genter, P.; Gerstein, H.C.; Giedraitis, V.; Villalpando, C.G.; Villalpando, M.E.G.; Goodarzi, M.O.; Larsen, P.G.; Gorkin, D.; Gross, M.; Guo, Y.; Hackinger, S.; Han, S.; Hattersley, A.T.; Herder, C.; Howard, A.G.; Hsueh, W.; Huang, M.; Huang, W.; Hung, Y.; Hwang, M.Y.; Hwu, C.; Ichihara, S.; Ikram, M.A.; Ingelsson, M.; Islam, M.T.; Isono, M.; Jang, H.M.; Jasmine, F.; Jiang, G.; Jonas, J.B.; Jørgensen, M.E.; Jørgensen, T.; Kamatani, Y.; Kandeel, F.R.; Kasturiratne, A.; Katsuya, T.; Kaur, V.; Kawaguchi, T.; Keaton, J.M.; Kho, A.N.; Khor, C.C.; Kibriya, M.G.; Kim, D.H.; Kohara, K.; Kriebel, J.; Kronenberg, F.; Kuusisto, J.; Läll, K.; Lange, L.A.; Lee, M.; Lee, N.R.; Leong, A.; Li, L.; Li, Y.; Li-Gao, R.; Ligthart, S.; Lindgren, C.M.; Linneberg, A.; Liu, C.; Liu, J.; Locke, A.E.; Louie, T.; Luan, J.; Luk, A.O.; Luo, X.; Lv, J.; Lyssenko, V.; Mamakou, V.; Mani, K.R.; Meitinger, T.; Metspalu, A.; Morris, A.D.; Nadkarni, G.N.; Nadler, J.L.; Nalls, M.A.; Nayak, U.; Nongmaithem, S.S.; Ntalla, I.; Okada, Y.; Orozco, L.; Patel, S.R.; Pereira, M.A.; Peters, A.; Pirie, F.J.; Porneala, B.; Prasad, G.; Preissl, S.; Rasmussen-Torvik, L.J.; Reiner, A.P.; Roden, M.; Rohde, R.; Roll, K.; Sabanayagam, C.; Sander, M.; Sandow, K.; Sattar, N.; Schönherr, S.; Schurmann, C.; Shahriar, M.; Shi, J.; Shin, D.M.; Shriner, D.; Smith, J.A.; So, W.Y.; Stančáková, A.; Stilp, A.M.; Strauch, K.; Suzuki, K.; Takahashi, A.; Taylor, K.D.; Thorand, B.; Thorleifsson, G.; Thorsteinsdottir, U.; Tomlinson, B.; Torres, J.M.; Tsai, F.; Tuomilehto, J.; Tusie-Luna, T.; Udler, M.S.; Salgado, A.V.; Dam, R.M.; Klinken, J.B.; Varma, R.; Vujkovic, M.; Wacher-Rodarte, N.; Wheeler, E.; Whitsel, E.A.; Wickremasinghe, A.R.; Dijk, K.W.; Witte, D.R.; Yajnik, C.S; Yamamoto, K.; Yamauchi, T.; Yengo, L.; Yoon, K.; Yu, C.; Yuan, J.M.; Yusuf, S.; Zhang, L.; Zheng, W.; FinnGen; eMERGE Consortium; Leslie J Raffel; Igase, M.; Ipp, E.; Redline, S.; Cho, Y.S.; Lind, L.; Province, M.A.; Hanis, C.L.; Peyser, P.A.; Ingelsson, E.; Zonderman, A.B.; Psaty, B.M.; Wang, Y.; Rotimi, C.N.; Becker, D.M.; Matsuda, F.; Liu, Y.; Zeggini, E.; Yokota, M.; Rich, S.S.; Kooperberg, C.; Pankow, J.S.; Engert, J.C.; Chen, Y.I.; Froguel, P.; Wilson, J.G.; Sheu, W.H.H.; Kardia, S.L.R.; Wu, J.Y.; Hayes, M.G.; Ma, R.C.W.; Wong, T.Y.; Groop, L.; Mook-Kanamori, D.O.; Chandak, G.R.; Collins, F.S.; Bharadwaj, D.; Paré, G.; Sale, M.M.; Ahsan, H.; Motala, A.A.; Shu, X.O.; Park, K.S.; Jukema, J.W.; Cruz, M.; Cowdin, R.M.; Grallert, H.; Cheng, C.Y.; Bottinger, E.P.; Dehghan, A.; Tai, E.S.; Dupuis, J.; Kato, N.; Laakso, M.; Köttgen, A.; Koh, W.P.; Palmer, C.N.A.; Liu, S.; Abecasis, G.; Kooner, J.S.; Loos, R.J.F.; North, K.E.; Haiman, C.A.; Florez, J.C.; Saleheen, D.; Hansen, T.; Pedersen, O.; Mägi, R.; Langenberg, C.; Wareham, N.J.; Maeda, S.; Kadowaki, T.; Lee, J.; Millwood, I.Y.; Walters, R.G.; Stefansson, K.; Myers, S.R.; Ferrer, J.; Gaulton, K.J.; Meigs, J.B.; Mohlke, K.L.; Gloyn, A.L.; Bowden, D.W.; Below, J.E.; Chambers, J.C.; Sim, X.; Boehnke, M.; Rotter, J.I.; McCarthy, M.I.; Morris, A.P.We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10-9), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.Item Patterns of change of multisite pain over one year of follow-up and related risk factors(Philadelphia : Saunders, London, 2022) Ntani, G.; Coggon, D.; Felli, V.E.; Harari, F.; Barrero, L.H.; Felknor, S.A.; Rojas, M.; Serra, C.; Bonzini, M.; Merisalu, E.; Habib, R.R.; Sadeghian, F.; Wickremasinghe, A.R.; Matsudaira, K.; Nyantumbu-Mkhize, B.; Kelsall, H.L.; Harcombe, H.; Walker-Bone, K.Background: Multisite musculoskeletal pain is common and disabling. This study aimed to prospectively investigate distribution of musculoskeletal pain anatomically, and explore risk factors for increases/reductions in the number of painful sites. Methods: Using data from participants working in 45 occupational groups in 18 countries, we explored changes in reporting pain at 10 anatomical sites on two occasions 14 months apart. We used descriptive statistics to explore consistency over time in the number of painful sites, and their anatomical distribution. Baseline risk factors for increases/reductions by ≥3 painful sites were explored by random intercept logistic regression that adjusted for baseline number of painful sites. Results: Amongst 8,927 workers, only 20% reported no pain at either time point, and 16% reported ≥3 painful sites both times. After 14 months, the anatomical distribution of pain often changed but there was only an average increase of 0.17 painful sites. Some 14% workers reported a change in painful sites by ≥ 3. Risk factors for an increase of ≥ 3 painful sites included female sex, lower educational attainment, having a physically demanding job, and adverse beliefs about the work-relatedness of musculoskeletal pain. Also predictive were: older age, somatising tendency, and poorer mental health (each of which was also associated with lower odds of reductions of ≥ 3 painful sites). Conclusions: Longitudinally, the number of reported painful sites was relatively stable but the anatomical distribution varied considerably. These findings suggest an important role for central pain sensitisation mechanisms, rather than localised risk factors, among working adults.Item The Trans-ancestral genomic architecture of glycemic traits(Nature Pub. Co., 2021) Chen, J.; Spracklen, C.N.; Marenne, G.; Varshney, A.; Corbin, L.J.; Luan, J.; Willems, S.M.; Wu, Y.; Zhang, X.; Horikoshi, M.; Boutin, T.S.; Mägi, R.; Waage, J.; Li-Gao, R.; Chan, K.H.K; Yao, J.; Anasanti, M.D.; Chu, A.Y.; Claringbould, A.; Heikkinen, J.; Hong, J.; Hottenga, J.J.; Huo, S.; Kaakinen, M.A.; Louie, T.; März, W.; Moreno-Macias, H.; Ndungu, A.; Nelson, S.C.; Nolte, I.M.; North, K.E.; Raulerson, C.K.; Ray, D.; Rohde, R.; Rybin, D.; Schurmann, C.; Sim, X.; Southam, L.; Stewart, I.D.; Wang, C.A.; Wang, Y.; Wu, P.; Zhang, W.; Ahluwalia, T.S.; Appel, E.V.R.; Bielak, L.F.; Brody, J.A.; Burtt, N.P.; Cabrera, C.P.; Cade, B.E.; Chai, J.F.; Chai, X.; Chang, L.C.; Chen, C.H.; Chen, B.H.; Chitrala, K.N.; Chiu, Y.F.; De Haan, H.G.; Delgado, G.E.; Demirkan, A.; Duan, Q.; Engmann, J.; Fatumo, S.A.; Gayán, J.; Giulianini, F.; Gong, J.H.; Gustafsson, S.; Hai, Y.; Hartwig, F.P.; He, J.; Heianza, Y.; Huang, T.; Huerta-Chagoya, A.; Hwang, M.Y.; Jensen, R.A.; Kawaguchi, T.; Kentistou, K.A.; Kim, Y.J.; Kleber, M.E.; Kooner, I.K.; Lai, S.; Lange, L.A.; Langefeld, C.D.; Lauzon, M.; Li, M.; Ligthart, S.; Liu, J.; Loh, M.; Long, J.; Lyssenko, V.; Mangino, M.; Marzi, C.; Montasser, M.E.; Nag, A.; Nakatochi, M.; Noce, D.; Noordam, R.; Pistis, G.; Preuss, M.; Raffield, L.; Rasmussen-Torvik, L.J.; Rich, S.S.; Robertson, N.R.; Rueedi, R.; Ryan, K.; Sanna, S.; Saxena, R.; Schraut, K.E.; Sennblad, B.; Setoh, K.; Smith, A.V.; Sparsø, T.; Strawbridge, R.J.; Takeuchi, F.; Tan, J.; Trompet, S.; Van den Akker, E.; Van der Most, P.J.; Verweij, N.; Vogel, M.; Wang, H.; Wang, C.; Wang, N.; Warren, H.R.; Wen, W.; Wilsgaard, T.; Wong, A.; Wood, A.R.; Xie, T.; Zafarmand, M.H.; Zhao, J.H.; Zhao, W.; Amin, N.; Arzumanyan, Z.; Astrup, A.; Bakker, S.J.L.; Baldassarre, D.; Beekman, M.; Bergman, R.N.; Bertoni, A.; Blüher, M.; Bonnycastle, L.L.; Bornstein, S.R.; Bowden, D.W.; Cai, Q.; Campbell, A.; Campbell, H.; Chang, Y.C.; de Geus, E.J.C.; Dehghan, A.; Du, S.; Eiriksdottir, G.; Farmaki, A.E.; Frånberg, M.; Fuchsberger, C.; Gao, Y.; Gjesing, A.P.; Goel, A.; Han, S.; Hartman, C.A.; Herder, C.; Hicks, A.A.; Hsieh, C.H.; Hsueh, W.A.; Ichihara, S.; Igase, M.; Ikram, M.A.; Johnson, W.C.; Jørgensen, M.E.; Joshi, P.K.; Kalyani, R.R.; Kandeel, F.R.; Katsuya, T.; Khor, C.C.; Kiess, W.; Kolcic, I.; Kuulasmaa, T.; Kuusisto, J.; Läll, K.; Lam, K.; Lawlor, D.A.; Lee, N.R.; Lemaitre, R.N.; Li, H.; Lifelines Cohort Study; Lin, S.Y.; Lindström, J.; Linneberg, A.; Liu, J.; Lorenzo, C.; Matsubara, T.; Matsuda, F.; Mingrone, G.; Mooijaart, S.; Moon, S.; Nabika, T.; Nadkarni, G.N.; Nadler, J.L.; Nelis, M.; Neville, M.J.; Norris, J.M.; Ohyagi, Y.; Peters, A.; Peyser, P.A.; Polasek, O.; Qi, Q.; Raven, D.; Reilly, D.F.; Reiner, A.; Rivideneira, F.; Roll, K.; Rudan, I.; Sabanayagam, C.; Sandow, K.; Sattar, N.; Schürmann, A.; Shi, J.; Stringham, H.M.; Taylor, K.D.; Teslovich, T.M.; Thuesen, B.; Timmers, P.R.H.J.; Tremoli, E.; Tsai, M.Y.; Uitterlinden, A.; van Dam, R.M.; van Heemst, D.; van Hylckama Vlieg, A.; van Vliet-Ostaptchouk, J.V.; Vangipurapu, J.; Vestergaard, H.; Wang, T.; Willems van Dijk, K.; Zemunik, T.; Abecasis, G.R.; Adair, L.S.; Aguilar-Salinas, C.A.; Alarcón-Riquelme, M.E.; An, P.; Aviles-Santa, L.; Becker, D.M.; Beilin, L.J.; Bergmann, S.; Bisgaard, H.; Black, C.; Boehnke, M.; Boerwinkle, E.; Böhm, B.O.; Bønnelykke, K.; Boomsma, D.I.; Bottinger, E.P.; Buchanan, T.A.; Canouil, M.; Caulfield, M.J.; Chambers, J.C.; Chasman, D.I.; Chen, Y.I.; Cheng, C.Y.; Collins, F.S.; Correa, A.; Cucca, F.; de Silva, H.J.; Dedoussis, G.; Elmståhl, S.; Evans, M.K.; Ferrannini, E.; Ferrucci, L.; Florez, J.C.; Franks, P.W.; Frayling, T.M.; Froguel, P.; Gigante, B.; Goodarzi, M.O.; Gordon-Larsen, P.; Grallert, H.; Grarup, N.; Grimsgaard, S.; Groop, L.; Gudnason, V.; Guo, X.; Hamsten, A.; Hansen, T.; Hayward, C.; Heckbert, S.R.; Horta, B.L.; Huang, W.; Ingelsson, E.; James, P.S.; Jarvelin, M.R.; Jonas, J.B.; Jukema, J.W.; Kaleebu, P.; Kaplan, R.; Kardia, S.L.R.; Kato, N.; Keinanen-Kiukaanniemi, S.M.; Kim, B.J.; Kivimaki, M.; Koistinen, H.A.; Kooner, J.S.; Körner, A.; Kovacs, P.; Kuh, D.; Kumari, M.; Kutalik, Z.; Laakso, M.; Lakka, T.A.; Launer, L.J.; Leander, K.; Li, H.; Lin, X.; Lind, L.; Lindgren, C.; Liu, S.; Loos, R.J.F.; Magnusson, P.K.E.; Mahajan, A.; Metspalu, A.; Mook-Kanamori, D.O.; Mori, T.A.; Munroe, P.B.; Njølstad, I.; O'Connell, J.R.; Oldehinkel, A.J.; Ong, K.K.; Padmanabhan, S.; Palmer, C.N.A.; Palmer, N.D.; Pedersen, O.; Pennell, C.E.; Porteous, D.J.; Pramstaller, P.P.; Province, M.A.; Psaty, B.M.; Qi, L.; Raffel, L.J.; Rauramaa, R.; Redline, S.; Ridker, P.M.; Rosendaal, F.R.; Saaristo, T.E.; Sandhu, M.; Saramies, J.; Schneiderman, N.; Schwarz, P.; Scott, L.J.; Selvin, E.; Sever, P.; Shu, X.O.; Slagboom, P.E.; Small, K.S.; Smith, B.H.; Snieder, H.; Sofer, T.; Sørensen, T.I.A.; Spector, T.D.; Stanton, A.; Steves, C.J.; Stumvoll, M.; Sun, L.; Tabara, Y.; Tai, E.S.; Timpson, N.J.; Tönjes, A.; Tuomilehto, J.; Tusie, T.; Uusitupa, M.; van der Harst, P.; van Duijn, C.; Vitart, V.; Vollenweider, P.; Vrijkotte, T.G.M.; Wagenknecht, L.E.; Walker, M.; Wang, Y.X.; Wareham, N.J.; Watanabe, R.M.; Watkins, H.; Wei, W.B.; Wickremasinghe, A.R.; Willemsen, G.; Wilson, J.F.; Wong, T.Y.; Wu, J.Y.; Xiang, A.H.; Yanek, L.R.; Yengo, L.; Yokota, M.; Zeggini, E.; Zheng, W.; Zonderman, A.B.; Rotter, J.I.; Gloyn, A.L.; McCarthy, M.I.; Dupuis, J.; Meigs, J.B.; Scott, R.A.; Prokopenko, I.; Leong, A.; Liu, C.T.; Parker, S.C.J.; Mohlke, K.L.; Langenberg, C.; Wheeler, E.; Morris, A.P.; Barroso, I.; Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC) Collaborators.ABSTRACT: Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.Item Physical activity tracking among Sri Lankan adults: findings from a 7-year follow-up of the Ragama Health Study(SAGE Publications, 2021) Pinidiyapathirage, J.; Kasturiratne, A.; Bennie, J.A.; Pathmeswaran, A.; Biddle, S.J.H.; de Silva, H.J.; Chackrewarthy, S.; Dassanayake, A.S.; Ranawaka, U.; Kato, N.; Wickremasinghe, A.R.ABSTRACT: Limited data are available on physical activity tracking among adults in low- and middle-income countries. Using a longitudinal design, we assessed trends and correlates of physical activity among Sri Lankan adults. Individuals selected through age-stratified random sampling, were screened initially in 2007 (n = 2986) and reevaluated in 2014 (n = 2148). On both occasions, structured interviews and clinical measurements were completed. Approximately 40% of the participants engaged in recommended levels of physical activity both at baseline and follow-up. One-fifth reported increased physical activity at follow-up, a similar proportion reported being persistently inactive or a reduction in physical activity. In the adjusted analysis, being persistently active was associated with male sex, a lower educational level and income, being free of any chronic disease conditions, better self-rated health, and sitting time <8 hours. Our findings support public health interventions to help maintain recommended physical activity levels over time, particularly for subgroups at high-risk of physical inactivity. KEYWORDS: Sri Lanka; lower middle-income countries; non-communicable diseases; physical activity; population studies.Item The clinical utility of accurate NAFLD ultrasound grading: Results from a community-based, prospective cohort study(Elsevier Science Ireland Ltd, 2021) Niriella, M.A.; Ediriweera, D.S.; Kasturiratne, A.; Gunasekara, D.; de Silva, S.T.; Dassanayake, A.S.; de Silva, A.P.; Kato, N.; Pathmeswaran, A.; Wickremasinghe, A.R.; de Silva, H.J.OBJECTIVES: Despite its widespread use there is no consensus on ultrasound criteria to diagnose fatty liver. METHOD: In an ongoing, cohort-study, participants were initially screened in 2007 and reassessed in 2014 by interview, anthropometric measurements, liver ultrasonography, and blood tests. We evaluated utility of increased hepatic echogenicity alone (intermediate) compared to using additional criteria which included signal attenuation and/or vascular blunting along with increase of hepatic echogenicity (moderate-severe), to diagnose fatty liver in NAFLD. We made a comparison of the two radiologically defined groups, in order to choose a classification method for NAFLD, which may better predict baseline adverse metabolic traits (MT), and adverse metabolic and cardiovascular events (CVE) after 7-year of follow-up. RESULTS: Of 2985 recruited in 2007, 940 (31.5 %) had moderate-severe NAFLD, 595 (19.9 %) intermediate NAFLD, and 957 (32.1 %) were controls (no fatty liver). 2148 (71.9 %) attended follow-up in 2014; they included 708 who had moderate-severe NAFLD, 446 intermediate NAFLD and 674 controls, at baseline (in 2007). At baseline, adverse anthropometric indices and MTs were significantly higher in both moderate-severe NAFLD and intermediate NAFLD compared to controls, except for low HDL. They were commoner in moderate-severe NAFLD than in intermediate NAFLD. After seven years, the odds of developing new-onset metabolic traits and CVEs were significantly higher compared to controls only in moderate-severe NAFLD. CONCLUSIONS: Only moderate-severe NAFLD predicted risk of incident adverse MTs and CVEs. However, both moderate-severe and intermediate NAFLD were associated with higher prevalence of adverse anthropometric and metabolic traits, thereby identifying individuals who need medical intervention even among those with milder degrees of fatty liver. We therefore recommend using increased hepatic echogenicity, and not only the more stringent criteria (which include signal attenuation and/or vascular blunting), for the diagnosis of fatty liver in individuals with NAFLD. KEYWORDS: Cardiovascular events; Fatty liver; NAFLD; Outcomes; Ultrasonography; Ultrasound criteria.