Language identification at word level in Sinhala-English code-mixed social media text

dc.contributor.authorShanmugalingam, K.
dc.contributor.authorSumathipala, S.
dc.date.accessioned2019-05-13T04:24:34Z
dc.date.available2019-05-13T04:24:34Z
dc.date.issued2019
dc.description.abstractAutomatic analyzing and extracting useful information from the noisy social media content are currently getting attention from the research community. It is common to find people easily mixing their native language along with the English language to express their thoughts in social media, using Unicode characters or the Unicode characters written in Roman Scripts. Thus these types of noisy code-mixed text are characterized by a high percentage of spelling mistakes with phonetic typing, wordplay, creative spelling, abbreviations, Meta tags, and so on. Identification of languages at word level become a necessary part for analyzing the noisy content in social media. It would be used as an intimidate language identifier for chatbot application by using the native languages. For this study we used Sinhala-English codemixed text from social media. Natural Language Processing (NLP) and Machine Learning (ML) technologies are used to identify the language tags at the word level. A novel approach proposed for this system implemented is machine learning classifier based on features such as Sinhala Unicode characters written in Roman scripts, dictionaries, and term frequency. Different machine learning classifiers such as Support Vector Machines (SVM), Naive Bayes, Logistic Regression, Random Forest and Decision Trees were used in the evaluation process. Among them, the highest accuracy of 90.5% was obtained when using Random Forest classifieren_US
dc.identifier.citationShanmugalingam, K., Sumathipala, S. (2019). Language identification at word level in Sinhala-English code-mixed social media text. IEEE International Research Conference on Smart computing & Systems Engineering (SCSE) 2019, Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka.P.113en_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/20164
dc.language.isoenen_US
dc.publisherIEEE International Research Conference on Smart computing & Systems Engineering (SCSE) 2019, Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lankaen_US
dc.subjectCode-mixingen_US
dc.subjectLanguage identificationen_US
dc.subjectMachine learningen_US
dc.subjectNatural Language Processing (NLP)en_US
dc.titleLanguage identification at word level in Sinhala-English code-mixed social media texten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
SC-1 (18).pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: