Development of tin oxide/copper(I) oxide heterojunction solar cell

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Faculty of Science, University of Kelaniya Sri Lanka

Abstract

The rapid expansion of the global population together with industrialization intensifies our diurnal energy need. Addressing the present energy demand is a challenging task. Solar energy stands as a pivotal solution to the global energy crisis, offering a sustainable and renewable energy source to meet the escalating demand for electricity. Photovoltaic energy emerges as a favorable substitute due to its widespread availability, free accessibility, eco-friendly nature, and reduced operational and maintenance expenses. However, the markedly available photovoltaics are unaffordable to the public due to their expensiveness. Accordingly, this study focuses on the development of a low-cost ecofriendly tin oxide (SnO2)-based heterojunction solar cell, aiming to enhance photovoltaic performance through systematic fabrication and optimization processes. The Cu/n-SnO2/p-Cu2O/Au heterojunction solar cell was fabricated using the method of electrodeposition. Tin (IV) Oxide (SnO₂) was employed as the n-type material and Copper(I) Oxide (Cu2O) as the p-type material. The fabrication process involved the electrodeposition of n-type SnO2 thin film on copper (Cu) substrates, followed by subsequent deposition of p-type copper(I) oxide (Cu2O) thin film. For making front contacts to the heterojunction, thin Au spots (area ∼2 × 2 mm2 ) were sputtered onto the p-Cu2O thin film of the bilayer. The back contact of the solar cell was the Cu substrate. The photoresponses of the Cu/n-SnO2/pCu2O/Au solar cell structure were monitored by optimizing the bath temperature of the SnO2 film deposition bath. Electrodeposition of SnO2 layers was performed on copper substrates in a threeelectrode electrochemical cell using a solution containing 30 mM SnCl2 and 150 mM HNO3 and electrodeposition was conducted at -0.85 V vs. Ag/AgCl for 2 min at temperature values of 70 ◦C, 75 ◦C, 80 ◦C, 85 ◦C, and 90 ◦C. To fabricate the device a p-Cu2O thin film was electrodeposited on Cu/nSnO2 film at -0.45 V vs. Ag/AgCl for 40 min in a three-electrode electrochemical cell containing 0.1 M CuSO4, 3 M C3H6O3, and NaOH aqueous solution. The temperature and pH of the bath were maintained at 60 °C and 13 respectively. The results of photoresponse measurements together with current-voltage measurements were used to optimize the solar cell. The highest photoresponses resulted for the SnO2 thin films deposited at a bath temperature value of 85 ◦C. This research contributes to the advancement of tin oxide-based heterojunction solar cell technology and offers insights for future optimization and development efforts in renewable energy generation.

Description

Keywords

Cu2O, Electrodeposition, Heterojunction, Photovoltaic, SnO2

Citation

Balasuriya B. M. U. H.; Kafi F. S. B.; Jayathilaka K. M. D. C.; Wijesundera L. B. D. R. P. (2024), Development of tin oxide/copper(I) oxide heterojunction solar cell, Proceedings of the International Conference on Applied and Pure Sciences (ICAPS 2024-Kelaniya) Volume 4, Faculty of Science, University of Kelaniya Sri Lanka. Page 100

Collections

Endorsement

Review

Supplemented By

Referenced By