Image segmentation based on spectral clustering methods

dc.contributor.authorRathnayaka, R.M.D.D.
dc.contributor.authorPerera, K.K.K.R.
dc.date.accessioned2017-01-04T08:55:11Z
dc.date.available2017-01-04T08:55:11Z
dc.date.issued2016
dc.description.abstractImage segmentation is a process of partitioning a digital image into smaller parts or small region to highlight the much important parts of an image. Segmented parts of an image should possess similar properties such as intensity, texture, color etc. Spectral clustering methods are based on eigenvectors of Laplacian matrices associated with the graphs. In this study, we considered a digital image as a graph and used various existing clustering methods to find the segmentations. Second smallest eigenvector of generalized eigensystem, the recursive two way normalized cut method, simultaneous k-way cut with multiple eigenvectors and k-means algorithms are used to partition the images. We compare the clusters obtained from these methods and identify the most efficient method in order to classify the images we considered. Calinski – Harabasz measure and gap evaluation criterion are used to evaluate the quality of clusters. Simulations are carried out using Matlab.en_US
dc.identifier.citationRathnayaka, R.M.D.D. and Perera, K.K.K.R. 2016. Image segmentation based on spectral clustering methods. In Proceedings of the International Research Symposium on Pure and Applied Sciences (IRSPAS 2016), Faculty of Science, University of Kelaniya, Sri Lanka. p 56.en_US
dc.identifier.isbn978-955-704-008-0
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/15710
dc.language.isoenen_US
dc.publisherFaculty of Science, University of Kelaniya, Sri Lankaen_US
dc.subjectClusteringen_US
dc.subjectEigenvectorsen_US
dc.subjectImage segmentationen_US
dc.subjectK- meansen_US
dc.subjectNormalized cuten_US
dc.titleImage segmentation based on spectral clustering methodsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
56.pdf
Size:
216.41 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections