A New Public Key Cryptosystem

dc.contributor.authorDissanayake, W.D.M.G.M.
dc.contributor.authorDissanayake, W.D.M.G.M.
dc.date.accessioned2018-08-10T08:22:56Z
dc.date.available2018-08-10T08:22:56Z
dc.date.issued2018
dc.date.issued2018
dc.description.abstractIn this paper a new CCA secure public key cryptosystem is presented. The introduced cryptosystem is simple and based on the factorization problem. The cryptosystem has two public keys and two private keys. Therefore two encryption algorithms and two decryption algorithms are in this system. Here, we hide the message in a matrix. This situation makes a difficult puzzle for adversaries. In this method, the public encryption key is (e,r,๐‘›), e and r are any prime numbers greater than 2 and less than n, n is a product of two large prime numbers. The decryption key is (d,s,๐‘›). d and s are multiplicative inverses of e modulo ั„(n) and r modulo ั„(n) respectively. We should select another integer ๐‘” (< 2๐‘š) and set the message ๐‘š and ๐‘” in a 2 โˆ— 2 matrix ๐‘‹ as the determinant of X is odd. We encrypt the determinant of the matrix by raising it to the eth power modulo ๐‘›. We also have to send ๐‘” for the decryption. ๐‘” is encrypted by raising it to the rth power modulo ๐‘›. When we decrypt the first ciphertext by raising it to another power d modulo ๐‘› and the second ciphertext by raising it to another power s modulo ๐‘›, we can find the message m. For an example, let ๐‘ = 7,๐‘ž = 11, ๐‘’ = 23, ๐‘Ÿ = 29. Then, ๐‘› = ๐‘๐‘ž = 7 ร— 11 = 77,ั„(๐‘›) = 60. Then for the private keys, ๐‘‘ = 47 and ๐‘  = 29. Let the message, ๐‘š = 30 and ๐‘” = 7. Then, ๐‘‹ = ( 30 7 1 2 ). From the encryption equations, ๐ถ1 โ‰ก [๐‘‘๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘Ž๐‘›๐‘ก(๐‘‹)๐‘’] ๐‘š๐‘œ๐‘‘ ๐‘› โ‰ก 5323 ๐‘š๐‘œ๐‘‘ 77 โ‰ก 58 and ๐ถ2 โ‰ก [๐‘”๐‘Ÿ] ๐‘š๐‘œ๐‘‘ ๐‘› โ‰ก 729 ๐‘š๐‘œ๐‘‘ 77 โ‰ก 63. The decryption equations are Determinant (๐‘‹) โ‰ก [๐ถ1๐‘‘] ๐‘š๐‘œ๐‘‘ ๐‘› โ‰ก 5847 ๐‘š๐‘œ๐‘‘ 77 โ‰ก 53 and ๐‘” โ‰ก [๐ถ2๐‘ ] ๐‘š๐‘œ๐‘‘ ๐‘› โ‰ก 6329 ๐‘š๐‘œ๐‘‘ 77 โ‰ก 7. Then, using 2๐‘š โ€“ ๐‘” = Determinant (๐‘‹), we can find ๐‘š = 30. If we use the fast exponentiation algorithm then the computational complexity of the cryptosystem is in polynomial time. The proposed cryptosystem is OW-CCA2 secure and also can use any standard security model to increase the security.en_US
dc.identifier.citationDissanayake, W.D.M.G.M. (2018). A New Public Key Cryptosystem. 3rd International Conference on Advances in Computing and Technology (ICACT โ€’ 2018), Faculty of Computing and Technology, University of Kelaniya, Sri Lanka. p11.en_US
dc.identifier.citationDissanayake, W.D.M.G.M. (2018). A New Public Key Cryptosystem. 3rd International Conference on Advances in Computing and Technology (ICACT โ€’ 2018), Faculty of Computing and Technology, University of Kelaniya, Sri Lanka. p11.en_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/18982
dc.language.isoenen_US
dc.language.isoenen_US
dc.publisher3rd International Conference on Advances in Computing and Technology (ICACT โ€’ 2018), Faculty of Computing and Technology, University of Kelaniya, Sri Lanka.en_US
dc.publisher3rd International Conference on Advances in Computing and Technology (ICACT โ€’ 2018), Faculty of Computing and Technology, University of Kelaniya, Sri Lanka.en_US
dc.subjectpublic key cryptosystemen_US
dc.subjectRSA cryptosystemen_US
dc.subjectEl-Gamal cryptosystemen_US
dc.subjectIND securityen_US
dc.titleA New Public Key Cryptosystemen_US
dc.titleA New Public Key Cryptosystemen_US
dc.typeArticleen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
11.pdf
Size:
419.55 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections