Method of Infinite Descent and proof of Fermat's last theorem for n = 3

dc.contributor.authorPiyadasa, R.A.D.
dc.date.accessioned2014-12-17T08:29:53Z
dc.date.available2014-12-17T08:29:53Z
dc.date.issued2010
dc.description.abstractThe first proof of Fermat’s last theorem for the exponent n  3 was given by Leonard Euler using the famous mathematical tool of Fermat called the method of infinite decent. However, Euler did not establish in full the key lemma required in the proof. Since then, several authors have published proofs for the cubic exponent but Euler's proof may have been supposed to be the simplest. Paulo Ribenboim [1] claims that he has patched up Euler’s proof and Edwards [2] also has given a proof of the critical and key lemma of Euler’s proof using the ring of complex numbers. Recently, Macys in his recent article [3, Eng.Transl.] claims that he may have reconstructed Euler’s proof for the key lemma. However, none of these proofs is short nor easy to understand compared to the simplicity of the theorem and the method of infinite decent The main objective of this paper is to provide a simple, short and independent proof for the theorem using the method of infinite decent. It is assumed that the equation 3 3 3 z  y  x , (x, y) 1 has non trivial integer solutions for (x, y, z) and their parametric representation [5] is obtained with one necessary condition that must be satisfied by the parameters. Using this necessary condition, an analytical proof of the theorem is given using the method contradiction. The proof is based on the method of finding roots of a cubic formulated by Tartagalia and Cardan [4], which is very much older than Fermat’s last theorem.en_US
dc.identifierMathematicsen_US
dc.identifier.citationResearch Symposium; 2010 :99-102ppen_US
dc.identifier.urihttp://repository.kln.ac.lk/handle/123456789/4752
dc.language.isoenen_US
dc.publisherResearch Symposium 2010 - Faculty of Graduate Studies, University of Kelaniyaen_US
dc.titleMethod of Infinite Descent and proof of Fermat's last theorem for n = 3en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
P 7.pdf
Size:
265.51 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections