Medicine

Permanent URI for this communityhttp://repository.kln.ac.lk/handle/123456789/12

This repository contains the published and unpublished research of the Faculty of Medicine by the staff members of the faculty

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Evaluating spatiotemporal dynamics of snakebite in Sri Lanka: Monthly incidence mapping from a national representative survey sample
    (Public Library of Science, 2021) Ediriweera, D.S.; Kasturiratne, A.; Pathmeswaran, A.; Gunawardena, N.K.; Jayamanne, S.F.; Murray, K.; Iwamura, T.; Isbister, G.; Dawson, A.; Lalloo, D.G.; de Silva, H.J.; Diggle, P.J.
    BACKGROUND: Snakebite incidence shows both spatial and temporal variation. However, no study has evaluated spatiotemporal patterns of snakebites across a country or region in detail. We used a nationally representative population sample to evaluate spatiotemporal patterns of snakebite in Sri Lanka. METHODOLOGY: We conducted a community-based cross-sectional survey representing all nine provinces of Sri Lanka. We interviewed 165 665 people (0.8% of the national population), and snakebite events reported by the respondents were recorded. Sri Lanka is an agricultural country; its central, southern and western parts receive rain mainly from Southwest monsoon (May to September) and northern and eastern parts receive rain mainly from Northeast monsoon (November to February). We developed spatiotemporal models using multivariate Poisson process modelling to explain monthly snakebite and envenoming incidences in the country. These models were developed at the provincial level to explain local spatiotemporal patterns. PRINCIPAL FINDINGS: Snakebites and envenomings showed clear spatiotemporal patterns. Snakebite hotspots were found in North-Central, North-West, South-West and Eastern Sri Lanka. They exhibited biannual seasonal patterns except in South-Western inlands, which showed triannual seasonality. Envenoming hotspots were confined to North-Central, East and South-West parts of the country. Hotspots in North-Central regions showed triannual seasonal patterns and South-West regions had annual patterns. Hotspots remained persistent throughout the year in Eastern regions. The overall monthly snakebite and envenoming incidences in Sri Lanka were 39 (95%CI: 38-40) and 19 (95%CI: 13-30) per 100 000, respectively, translating into 110 000 (95%CI: 107 500-112 500) snakebites and 45 000 (95%CI: 32 000-73 000) envenomings in a calendar year. CONCLUSIONS/SIGNIFICANCE: This study provides information on community-based monthly incidence of snakebites and envenomings over the whole country. Thus, it provides useful insights into healthcare decision-making, such as, prioritizing locations to establish specialized centres for snakebite management and allocating resources based on risk assessments which take into account both location and season.
  • Thumbnail Image
    Item
    Evaluating temporal patterns of snakebite in Sri Lanka: the potential for higher snakebite burdens with climate change
    (Oxford University Press, 2018) Ediriweera, D.S.; Diggle, P.J.; Kasturiratne, A.; Pathmeswaran, A.; Gunawardena, N.K.; Jayamanne, S.K.; Isbister, G.K.; Dawson, A.; Lalloo, D.G.; de Silva, H.J.
    BACKGROUND: Snakebite is a neglected tropical disease that has been overlooked by healthcare decision makers in many countries. Previous studies have reported seasonal variation in hospital admission rates due to snakebites in endemic countries including Sri Lanka, but seasonal patterns have not been investigated in detail. METHODS: A national community-based survey was conducted during the period of August 2012 to June 2013. The survey used a multistage cluster design, sampled 165 665 individuals living in 44 136 households and recorded all recalled snakebite events that had occurred during the preceding year. Log-linear models were fitted to describe the expected number of snakebites occurring in each month, taking into account seasonal trends and weather conditions, and addressing the effects of variation in survey effort during the study and of recall bias amongst survey respondents. ResulTS: Snakebite events showed a clear seasonal variation. Typically, snakebite incidence is highest during November–December followed by March–May and August, but this can vary between years due to variations in relative humidity, which is also a risk factor. Low relative-humidity levels are associated with high snakebite incidence. If current climate-change projections are correct, this could lead to an increase in the annual snakebite burden of 31.3% (95% confidence interval: 10.7–55.7) during the next 25–50 years. CONCLUSIONS: Snakebite in Sri Lanka shows seasonal variation. Additionally, more snakebites can be expected during periods of lower-than-expected humidity. Global climate change is likely to increase the incidence of snakebite in Sri Lanka.
  • Thumbnail Image
    Item
    The Global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths
    (Public Library of Science, 2008) Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J.
    BACKGROUND: Envenoming resulting from snakebites is an important public health problem in many tropical and subtropical countries. Few attempts have been made to quantify the burden, and recent estimates all suffer from the lack of an objective and reproducible methodology. In an attempt to provide an accurate, up-to-date estimate of the scale of the global problem, we developed a new method to estimate the disease burdendue to snakebites. METHODS AND FINDINGS: The global estimates were based on regional estimates that were, in turn, derived from data available for countries within a defined region. Three main strategies were used to obtain primary data: electronic searching for publications on snakebite, extraction of relevant country-specific mortality data from databases maintained by United Nations organizations, and identification of grey literature by discussion with key informants. Countries were grouped into 21 distinct geographic regions that are as epidemiologically homogenous as possible, in line with the GlobalBurden of Disease 2005 study (Global Burden Project of the World Bank). Incidence rates for envenoming were extracted from publications and used to estimate the number of envenomings for individual countries; if no data were available for a particular country, the lowest incidence rate within a neighbouring country was used. Where death registration data were reliable, reported deaths from snakebite were used; in other countries, deathswere estimated on the basis of observed mortality rates and the at-risk population. We estimate that, globally, at least 421,000 envenomings and 20,000 deaths occur each year due to snakebite. These figures may be as high as 1,841,000 envenomings and 94,000 deaths. Based on the fact thatenvenoming occurs in about one in every four snakebites, between 1.2 million and 5.5 million snakebites could occur annually. CONCLUSIONS: Snakebites cause considerable morbidity and mortality worldwide. The highest burden exists in South Asia, Southeast Asia, and sub-Saharan Africa. Comment in Estimating the global burden of snakebite can help to improve management. [PLoS Med. 2008]
All items in this Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated. No item in the repository may be reproduced for commercial or resale purposes.